Adaptive Stage-Aware Assessment Skill Transfer for Skill Determination
Skill determination aims to evaluate how well a participant performs a specific action. The task is rather challenging, due to the diversity of action types and the scarcity of samples. Many existing works train a skill determination model on limited samples of each action type separately. However,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.4061-4072 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4072 |
---|---|
container_issue | |
container_start_page | 4061 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Zhang, Shao-Jie Pan, Jia-Hui Gao, Jibin Zheng, Wei-Shi |
description | Skill determination aims to evaluate how well a participant performs a specific action. The task is rather challenging, due to the diversity of action types and the scarcity of samples. Many existing works train a skill determination model on limited samples of each action type separately. However, they neglect the skill similarities shared by different action types that can be exploited to enhance the skill determination process. How to exploit useful assessment skills from source actions to a related target action remains a challenge, and existing works have not ever found an effective way to accomplish this. In this work, we propose to achieve skill transfer for action assessment by an Ada ptive Stage-aware Assessment S kill T ransfer framework ( AdaST ) that transfers assessment skills from source actions to different stages of a target action adaptively. A source action search scheme is proposed to select relevant source actions for each target action. Furthermore, to encourage transferring effective and non-redundant assessment skills, a consistency loss and an orthogonality loss are introduced to ensure that the transferred assessment skills do not degrade the accurate determination and it provides complementary information. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TMM.2023.3294800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2023_3294800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10180083</ieee_id><sourcerecordid>2947400204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-4422a04956ecbec6fd1a4bab57f5b1f9c06ea7eea58b1bdb2cf42a524ed98f1e3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwMzBEYk44O3YSj1GhgNSKoWG27OSMUtqk2C6If4-rdmC6091793QfIbcUMkpBPjTLZcaA5VnOJK8AzsiESk5TgLI8j71gkEpG4ZJceb8GoFxAOSHzutO70H9jsgr6A9P6RztMau_R-y0OIVl99ptN0jg9eIsusaM7jR4xoNv2gw79OFyTC6s3Hm9OdUre50_N7CVdvD2_zupF2jLJQso5Yxq4FAW2BtvCdlRzo40orTDUyhYK1CWiFpWhpjOstZxpwTh2srIU8ym5P97dufFrjz6o9bh3Q4xU8e2SAzDgUQVHVetG7x1atXP9VrtfRUEdaKlISx1oqROtaLk7WnpE_CencVnl-R-KLGaT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947400204</pqid></control><display><type>article</type><title>Adaptive Stage-Aware Assessment Skill Transfer for Skill Determination</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shao-Jie ; Pan, Jia-Hui ; Gao, Jibin ; Zheng, Wei-Shi</creator><creatorcontrib>Zhang, Shao-Jie ; Pan, Jia-Hui ; Gao, Jibin ; Zheng, Wei-Shi</creatorcontrib><description>Skill determination aims to evaluate how well a participant performs a specific action. The task is rather challenging, due to the diversity of action types and the scarcity of samples. Many existing works train a skill determination model on limited samples of each action type separately. However, they neglect the skill similarities shared by different action types that can be exploited to enhance the skill determination process. How to exploit useful assessment skills from source actions to a related target action remains a challenge, and existing works have not ever found an effective way to accomplish this. In this work, we propose to achieve skill transfer for action assessment by an Ada ptive Stage-aware Assessment S kill T ransfer framework ( AdaST ) that transfers assessment skills from source actions to different stages of a target action adaptively. A source action search scheme is proposed to select relevant source actions for each target action. Furthermore, to encourage transferring effective and non-redundant assessment skills, a consistency loss and an orthogonality loss are introduced to ensure that the transferred assessment skills do not degrade the accurate determination and it provides complementary information. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2023.3294800</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive source action search ; assessment skill transfer ; Feature extraction ; Hair ; Orthogonality ; skill determination ; Skills ; Task analysis ; Training ; Transfer learning ; Videos</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.4061-4072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-4422a04956ecbec6fd1a4bab57f5b1f9c06ea7eea58b1bdb2cf42a524ed98f1e3</citedby><cites>FETCH-LOGICAL-c292t-4422a04956ecbec6fd1a4bab57f5b1f9c06ea7eea58b1bdb2cf42a524ed98f1e3</cites><orcidid>0000-0002-5862-3652 ; 0000-0002-5312-1813 ; 0000-0001-8327-0003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10180083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10180083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Shao-Jie</creatorcontrib><creatorcontrib>Pan, Jia-Hui</creatorcontrib><creatorcontrib>Gao, Jibin</creatorcontrib><creatorcontrib>Zheng, Wei-Shi</creatorcontrib><title>Adaptive Stage-Aware Assessment Skill Transfer for Skill Determination</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Skill determination aims to evaluate how well a participant performs a specific action. The task is rather challenging, due to the diversity of action types and the scarcity of samples. Many existing works train a skill determination model on limited samples of each action type separately. However, they neglect the skill similarities shared by different action types that can be exploited to enhance the skill determination process. How to exploit useful assessment skills from source actions to a related target action remains a challenge, and existing works have not ever found an effective way to accomplish this. In this work, we propose to achieve skill transfer for action assessment by an Ada ptive Stage-aware Assessment S kill T ransfer framework ( AdaST ) that transfers assessment skills from source actions to different stages of a target action adaptively. A source action search scheme is proposed to select relevant source actions for each target action. Furthermore, to encourage transferring effective and non-redundant assessment skills, a consistency loss and an orthogonality loss are introduced to ensure that the transferred assessment skills do not degrade the accurate determination and it provides complementary information. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method.</description><subject>Adaptation models</subject><subject>Adaptive source action search</subject><subject>assessment skill transfer</subject><subject>Feature extraction</subject><subject>Hair</subject><subject>Orthogonality</subject><subject>skill determination</subject><subject>Skills</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwMzBEYk44O3YSj1GhgNSKoWG27OSMUtqk2C6If4-rdmC6091793QfIbcUMkpBPjTLZcaA5VnOJK8AzsiESk5TgLI8j71gkEpG4ZJceb8GoFxAOSHzutO70H9jsgr6A9P6RztMau_R-y0OIVl99ptN0jg9eIsusaM7jR4xoNv2gw79OFyTC6s3Hm9OdUre50_N7CVdvD2_zupF2jLJQso5Yxq4FAW2BtvCdlRzo40orTDUyhYK1CWiFpWhpjOstZxpwTh2srIU8ym5P97dufFrjz6o9bh3Q4xU8e2SAzDgUQVHVetG7x1atXP9VrtfRUEdaKlISx1oqROtaLk7WnpE_CencVnl-R-KLGaT</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhang, Shao-Jie</creator><creator>Pan, Jia-Hui</creator><creator>Gao, Jibin</creator><creator>Zheng, Wei-Shi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5862-3652</orcidid><orcidid>https://orcid.org/0000-0002-5312-1813</orcidid><orcidid>https://orcid.org/0000-0001-8327-0003</orcidid></search><sort><creationdate>2024</creationdate><title>Adaptive Stage-Aware Assessment Skill Transfer for Skill Determination</title><author>Zhang, Shao-Jie ; Pan, Jia-Hui ; Gao, Jibin ; Zheng, Wei-Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-4422a04956ecbec6fd1a4bab57f5b1f9c06ea7eea58b1bdb2cf42a524ed98f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive source action search</topic><topic>assessment skill transfer</topic><topic>Feature extraction</topic><topic>Hair</topic><topic>Orthogonality</topic><topic>skill determination</topic><topic>Skills</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shao-Jie</creatorcontrib><creatorcontrib>Pan, Jia-Hui</creatorcontrib><creatorcontrib>Gao, Jibin</creatorcontrib><creatorcontrib>Zheng, Wei-Shi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Shao-Jie</au><au>Pan, Jia-Hui</au><au>Gao, Jibin</au><au>Zheng, Wei-Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Stage-Aware Assessment Skill Transfer for Skill Determination</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>4061</spage><epage>4072</epage><pages>4061-4072</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Skill determination aims to evaluate how well a participant performs a specific action. The task is rather challenging, due to the diversity of action types and the scarcity of samples. Many existing works train a skill determination model on limited samples of each action type separately. However, they neglect the skill similarities shared by different action types that can be exploited to enhance the skill determination process. How to exploit useful assessment skills from source actions to a related target action remains a challenge, and existing works have not ever found an effective way to accomplish this. In this work, we propose to achieve skill transfer for action assessment by an Ada ptive Stage-aware Assessment S kill T ransfer framework ( AdaST ) that transfers assessment skills from source actions to different stages of a target action adaptively. A source action search scheme is proposed to select relevant source actions for each target action. Furthermore, to encourage transferring effective and non-redundant assessment skills, a consistency loss and an orthogonality loss are introduced to ensure that the transferred assessment skills do not degrade the accurate determination and it provides complementary information. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2023.3294800</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5862-3652</orcidid><orcidid>https://orcid.org/0000-0002-5312-1813</orcidid><orcidid>https://orcid.org/0000-0001-8327-0003</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.4061-4072 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2023_3294800 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive source action search assessment skill transfer Feature extraction Hair Orthogonality skill determination Skills Task analysis Training Transfer learning Videos |
title | Adaptive Stage-Aware Assessment Skill Transfer for Skill Determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Stage-Aware%20Assessment%20Skill%20Transfer%20for%20Skill%20Determination&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhang,%20Shao-Jie&rft.date=2024&rft.volume=26&rft.spage=4061&rft.epage=4072&rft.pages=4061-4072&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2023.3294800&rft_dat=%3Cproquest_RIE%3E2947400204%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947400204&rft_id=info:pmid/&rft_ieee_id=10180083&rfr_iscdi=true |