A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network

Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image recons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2023, Vol.25, p.4026-4040
Hauptverfasser: Wang, Chuntao, Zhang, Tianjian, Chen, Hao, Huang, Qiong, Ni, Jiangqun, Zhang, Xinpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4040
container_issue
container_start_page 4026
container_title IEEE transactions on multimedia
container_volume 25
creator Wang, Chuntao
Zhang, Tianjian
Chen, Hao
Huang, Qiong
Ni, Jiangqun
Zhang, Xinpeng
description Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image reconstruction process. In specific, a simple yet effective uniform down-sampling is utilized for lossy compression of images encrypted with a modulo-256 addition, and the task of image reconstruction from an encrypted down-sampled image is then formulated as a problem of constrained super-resolution (SR) reconstruction. A customized residual dense spatial network (RDSN) is proposed to solve the formulated constrained SR task by taking advantage of spatial attention mechanism (SAM), global skip connection (GSC), and uniform down-sampling constraint (UDC) that is specific to an ETC system. Extensive experimental results show that the proposed ETC scheme achieves significant performance improvement compared with other state-of-the-art ETC methods, indicating the feasibility and effectiveness of the proposed deep-learning based ETC scheme.
doi_str_mv 10.1109/TMM.2022.3171099
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2022_3171099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765370</ieee_id><sourcerecordid>2862646608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5598bdb5dd43f2e7357f9b799f3db619e9bd92e3de52cf2efc6eeb9bb20e91813</originalsourceid><addsrcrecordid>eNo9kNFPwjAQxhujiYi-m_jSxOdh263r-kgmKglgIvC8rOsNhmyd7abBv94SiE933-X33eU-hO4pGVFK5NNqPh8xwtgopMJreYEGVEY0IESIS99zRgLJKLlGN87tCKERJ2KA2jFemG_Y40lT2EPbVaYJVltogplx7hCkpm4tOOfHeFlsoQZsSpyavbF4WucbcHjtqmaD0951pq5-QeMPcJXu8z1-hsYBXrZ5V3m1gO7H2M9bdFXmewd35zpE65fJKn0LZu-v03Q8CwomaRdwLhOlFdc6CksGIuSilEpIWYZaxVSCVFoyCDVwVnigLGIAJZViBCRNaDhEj6e9rTVfPbgu25neNv5kxpKYxVEck8RT5EQV1v9rocxaW9W5PWSUZMdcM59rdsw1O-fqLQ8nSwUA_7gUMQ8FCf8Awvx1cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862646608</pqid></control><display><type>article</type><title>A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chuntao ; Zhang, Tianjian ; Chen, Hao ; Huang, Qiong ; Ni, Jiangqun ; Zhang, Xinpeng</creator><creatorcontrib>Wang, Chuntao ; Zhang, Tianjian ; Chen, Hao ; Huang, Qiong ; Ni, Jiangqun ; Zhang, Xinpeng</creatorcontrib><description>Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image reconstruction process. In specific, a simple yet effective uniform down-sampling is utilized for lossy compression of images encrypted with a modulo-256 addition, and the task of image reconstruction from an encrypted down-sampled image is then formulated as a problem of constrained super-resolution (SR) reconstruction. A customized residual dense spatial network (RDSN) is proposed to solve the formulated constrained SR task by taking advantage of spatial attention mechanism (SAM), global skip connection (GSC), and uniform down-sampling constraint (UDC) that is specific to an ETC system. Extensive experimental results show that the proposed ETC scheme achieves significant performance improvement compared with other state-of-the-art ETC methods, indicating the feasibility and effectiveness of the proposed deep-learning based ETC scheme.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3171099</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Color ; Color imagery ; Constraints ; Cryptography ; Customization ; Deep learning ; Encrypted image compression ; Encryption ; Feature extraction ; Image coding ; Image compression ; Image reconstruction ; residual dense network ; Sampling ; spatial attention mechanism ; super-resolution reconstruction</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.4026-4040</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5598bdb5dd43f2e7357f9b799f3db619e9bd92e3de52cf2efc6eeb9bb20e91813</citedby><cites>FETCH-LOGICAL-c291t-5598bdb5dd43f2e7357f9b799f3db619e9bd92e3de52cf2efc6eeb9bb20e91813</cites><orcidid>0000-0002-5482-1766 ; 0000-0002-7666-8985 ; 0000-0002-0212-3501 ; 0000-0002-7520-9031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9765370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chuntao</creatorcontrib><creatorcontrib>Zhang, Tianjian</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Huang, Qiong</creatorcontrib><creatorcontrib>Ni, Jiangqun</creatorcontrib><creatorcontrib>Zhang, Xinpeng</creatorcontrib><title>A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image reconstruction process. In specific, a simple yet effective uniform down-sampling is utilized for lossy compression of images encrypted with a modulo-256 addition, and the task of image reconstruction from an encrypted down-sampled image is then formulated as a problem of constrained super-resolution (SR) reconstruction. A customized residual dense spatial network (RDSN) is proposed to solve the formulated constrained SR task by taking advantage of spatial attention mechanism (SAM), global skip connection (GSC), and uniform down-sampling constraint (UDC) that is specific to an ETC system. Extensive experimental results show that the proposed ETC scheme achieves significant performance improvement compared with other state-of-the-art ETC methods, indicating the feasibility and effectiveness of the proposed deep-learning based ETC scheme.</description><subject>Cloud computing</subject><subject>Color</subject><subject>Color imagery</subject><subject>Constraints</subject><subject>Cryptography</subject><subject>Customization</subject><subject>Deep learning</subject><subject>Encrypted image compression</subject><subject>Encryption</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image reconstruction</subject><subject>residual dense network</subject><subject>Sampling</subject><subject>spatial attention mechanism</subject><subject>super-resolution reconstruction</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFPwjAQxhujiYi-m_jSxOdh263r-kgmKglgIvC8rOsNhmyd7abBv94SiE933-X33eU-hO4pGVFK5NNqPh8xwtgopMJreYEGVEY0IESIS99zRgLJKLlGN87tCKERJ2KA2jFemG_Y40lT2EPbVaYJVltogplx7hCkpm4tOOfHeFlsoQZsSpyavbF4WucbcHjtqmaD0951pq5-QeMPcJXu8z1-hsYBXrZ5V3m1gO7H2M9bdFXmewd35zpE65fJKn0LZu-v03Q8CwomaRdwLhOlFdc6CksGIuSilEpIWYZaxVSCVFoyCDVwVnigLGIAJZViBCRNaDhEj6e9rTVfPbgu25neNv5kxpKYxVEck8RT5EQV1v9rocxaW9W5PWSUZMdcM59rdsw1O-fqLQ8nSwUA_7gUMQ8FCf8Awvx1cg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wang, Chuntao</creator><creator>Zhang, Tianjian</creator><creator>Chen, Hao</creator><creator>Huang, Qiong</creator><creator>Ni, Jiangqun</creator><creator>Zhang, Xinpeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5482-1766</orcidid><orcidid>https://orcid.org/0000-0002-7666-8985</orcidid><orcidid>https://orcid.org/0000-0002-0212-3501</orcidid><orcidid>https://orcid.org/0000-0002-7520-9031</orcidid></search><sort><creationdate>2023</creationdate><title>A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network</title><author>Wang, Chuntao ; Zhang, Tianjian ; Chen, Hao ; Huang, Qiong ; Ni, Jiangqun ; Zhang, Xinpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5598bdb5dd43f2e7357f9b799f3db619e9bd92e3de52cf2efc6eeb9bb20e91813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Color</topic><topic>Color imagery</topic><topic>Constraints</topic><topic>Cryptography</topic><topic>Customization</topic><topic>Deep learning</topic><topic>Encrypted image compression</topic><topic>Encryption</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image reconstruction</topic><topic>residual dense network</topic><topic>Sampling</topic><topic>spatial attention mechanism</topic><topic>super-resolution reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuntao</creatorcontrib><creatorcontrib>Zhang, Tianjian</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Huang, Qiong</creatorcontrib><creatorcontrib>Ni, Jiangqun</creatorcontrib><creatorcontrib>Zhang, Xinpeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chuntao</au><au>Zhang, Tianjian</au><au>Chen, Hao</au><au>Huang, Qiong</au><au>Ni, Jiangqun</au><au>Zhang, Xinpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>4026</spage><epage>4040</epage><pages>4026-4040</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image reconstruction process. In specific, a simple yet effective uniform down-sampling is utilized for lossy compression of images encrypted with a modulo-256 addition, and the task of image reconstruction from an encrypted down-sampled image is then formulated as a problem of constrained super-resolution (SR) reconstruction. A customized residual dense spatial network (RDSN) is proposed to solve the formulated constrained SR task by taking advantage of spatial attention mechanism (SAM), global skip connection (GSC), and uniform down-sampling constraint (UDC) that is specific to an ETC system. Extensive experimental results show that the proposed ETC scheme achieves significant performance improvement compared with other state-of-the-art ETC methods, indicating the feasibility and effectiveness of the proposed deep-learning based ETC scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3171099</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5482-1766</orcidid><orcidid>https://orcid.org/0000-0002-7666-8985</orcidid><orcidid>https://orcid.org/0000-0002-0212-3501</orcidid><orcidid>https://orcid.org/0000-0002-7520-9031</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023, Vol.25, p.4026-4040
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2022_3171099
source IEEE Electronic Library (IEL)
subjects Cloud computing
Color
Color imagery
Constraints
Cryptography
Customization
Deep learning
Encrypted image compression
Encryption
Feature extraction
Image coding
Image compression
Image reconstruction
residual dense network
Sampling
spatial attention mechanism
super-resolution reconstruction
title A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Encryption-Then-Lossy-Compression%20Scheme%20of%20Color%20Images%20Using%20Customized%20Residual%20Dense%20Spatial%20Network&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Wang,%20Chuntao&rft.date=2023&rft.volume=25&rft.spage=4026&rft.epage=4040&rft.pages=4026-4040&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3171099&rft_dat=%3Cproquest_RIE%3E2862646608%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862646608&rft_id=info:pmid/&rft_ieee_id=9765370&rfr_iscdi=true