Latent Heterogeneous Graph Network for Incomplete Multi-View Learning
Multi-view learning has progressed rapidly in recent years. Although many previous studies assume that each instance appears in all views, it is common in real-world applications for instances to be missing from some views, resulting in incomplete multi-view data. To tackle this problem, we propose...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.3033-3045 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3045 |
---|---|
container_issue | |
container_start_page | 3033 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Zhu, Pengfei Yao, Xinjie Wang, Yu Cao, Meng Hui, Binyuan Zhao, Shuai Hu, Qinghua |
description | Multi-view learning has progressed rapidly in recent years. Although many previous studies assume that each instance appears in all views, it is common in real-world applications for instances to be missing from some views, resulting in incomplete multi-view data. To tackle this problem, we propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning, which aims to use multiple incomplete views as fully as possible in a flexible manner. By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized. To explore the complex relationship between samples and latent representations, a neighborhood constraint and a view-existence constraint are proposed, for the first time, to construct a heterogeneous graph. Finally, to avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model over existing state-of-the-art approaches. Our code is available at: https://github.com/yxjdarren/LHGN_TMM_2022 . |
doi_str_mv | 10.1109/TMM.2022.3154592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2022_3154592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721669</ieee_id><sourcerecordid>2847965066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d415bd6f0a12beb192a094a28792a48e9bb8e5281d0b8b4f2a0d5bb57cec95813</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ7W6SPUrRtpDqpXpddpNJTW2zcZNQ_PduafE0H8z7ZuAxdo8wQQT1tF6tJhw4n0xRCqn4BRuhEhgDpOllyJJDrDjCNbvpui0ACgnpiL3kpqemjxbUk3cbasgNXTT3pv2K3qg_OP8dVc5Hy6Zw-3YXqGg17Po6_qzpEOVkfFM3m1t2VZldR3fnOWYfry_r2SLO3-fL2XMeF1xhH5cCpS2TCgxySxYVN6CE4VkakshIWZuR5BmWYDMrqrAupbUyLahQMsPpmD2e7rbe_QzU9XrrBt-El5pnIlWJhCQJFJyowruu81Tp1td74381gj7K0kGWPsrSZ1mh8nCq1ET0j6uUY5Ko6R83FmUm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965066</pqid></control><display><type>article</type><title>Latent Heterogeneous Graph Network for Incomplete Multi-View Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Pengfei ; Yao, Xinjie ; Wang, Yu ; Cao, Meng ; Hui, Binyuan ; Zhao, Shuai ; Hu, Qinghua</creator><creatorcontrib>Zhu, Pengfei ; Yao, Xinjie ; Wang, Yu ; Cao, Meng ; Hui, Binyuan ; Zhao, Shuai ; Hu, Qinghua</creatorcontrib><description>Multi-view learning has progressed rapidly in recent years. Although many previous studies assume that each instance appears in all views, it is common in real-world applications for instances to be missing from some views, resulting in incomplete multi-view data. To tackle this problem, we propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning, which aims to use multiple incomplete views as fully as possible in a flexible manner. By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized. To explore the complex relationship between samples and latent representations, a neighborhood constraint and a view-existence constraint are proposed, for the first time, to construct a heterogeneous graph. Finally, to avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model over existing state-of-the-art approaches. Our code is available at: https://github.com/yxjdarren/LHGN_TMM_2022 .</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2022.3154592</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Correlation ; Feature extraction ; Graph learning ; heterogeneous graph network ; incomplete multi-view learning ; Kernel ; Learning ; Neural networks ; Representations ; Task analysis ; Uniform resource locators ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.3033-3045</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d415bd6f0a12beb192a094a28792a48e9bb8e5281d0b8b4f2a0d5bb57cec95813</citedby><cites>FETCH-LOGICAL-c291t-d415bd6f0a12beb192a094a28792a48e9bb8e5281d0b8b4f2a0d5bb57cec95813</cites><orcidid>0000-0001-5495-5345 ; 0000-0002-4310-9140 ; 0000-0002-2160-7595 ; 0000-0001-7765-8095 ; 0000-0002-4788-8655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9721669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Pengfei</creatorcontrib><creatorcontrib>Yao, Xinjie</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Cao, Meng</creatorcontrib><creatorcontrib>Hui, Binyuan</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><title>Latent Heterogeneous Graph Network for Incomplete Multi-View Learning</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Multi-view learning has progressed rapidly in recent years. Although many previous studies assume that each instance appears in all views, it is common in real-world applications for instances to be missing from some views, resulting in incomplete multi-view data. To tackle this problem, we propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning, which aims to use multiple incomplete views as fully as possible in a flexible manner. By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized. To explore the complex relationship between samples and latent representations, a neighborhood constraint and a view-existence constraint are proposed, for the first time, to construct a heterogeneous graph. Finally, to avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model over existing state-of-the-art approaches. Our code is available at: https://github.com/yxjdarren/LHGN_TMM_2022 .</description><subject>Correlation</subject><subject>Feature extraction</subject><subject>Graph learning</subject><subject>heterogeneous graph network</subject><subject>incomplete multi-view learning</subject><subject>Kernel</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Task analysis</subject><subject>Uniform resource locators</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ7W6SPUrRtpDqpXpddpNJTW2zcZNQ_PduafE0H8z7ZuAxdo8wQQT1tF6tJhw4n0xRCqn4BRuhEhgDpOllyJJDrDjCNbvpui0ACgnpiL3kpqemjxbUk3cbasgNXTT3pv2K3qg_OP8dVc5Hy6Zw-3YXqGg17Po6_qzpEOVkfFM3m1t2VZldR3fnOWYfry_r2SLO3-fL2XMeF1xhH5cCpS2TCgxySxYVN6CE4VkakshIWZuR5BmWYDMrqrAupbUyLahQMsPpmD2e7rbe_QzU9XrrBt-El5pnIlWJhCQJFJyowruu81Tp1td74381gj7K0kGWPsrSZ1mh8nCq1ET0j6uUY5Ko6R83FmUm</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhu, Pengfei</creator><creator>Yao, Xinjie</creator><creator>Wang, Yu</creator><creator>Cao, Meng</creator><creator>Hui, Binyuan</creator><creator>Zhao, Shuai</creator><creator>Hu, Qinghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5495-5345</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid><orcidid>https://orcid.org/0000-0002-2160-7595</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid></search><sort><creationdate>2023</creationdate><title>Latent Heterogeneous Graph Network for Incomplete Multi-View Learning</title><author>Zhu, Pengfei ; Yao, Xinjie ; Wang, Yu ; Cao, Meng ; Hui, Binyuan ; Zhao, Shuai ; Hu, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d415bd6f0a12beb192a094a28792a48e9bb8e5281d0b8b4f2a0d5bb57cec95813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation</topic><topic>Feature extraction</topic><topic>Graph learning</topic><topic>heterogeneous graph network</topic><topic>incomplete multi-view learning</topic><topic>Kernel</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Task analysis</topic><topic>Uniform resource locators</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Pengfei</creatorcontrib><creatorcontrib>Yao, Xinjie</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Cao, Meng</creatorcontrib><creatorcontrib>Hui, Binyuan</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Pengfei</au><au>Yao, Xinjie</au><au>Wang, Yu</au><au>Cao, Meng</au><au>Hui, Binyuan</au><au>Zhao, Shuai</au><au>Hu, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent Heterogeneous Graph Network for Incomplete Multi-View Learning</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>3033</spage><epage>3045</epage><pages>3033-3045</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Multi-view learning has progressed rapidly in recent years. Although many previous studies assume that each instance appears in all views, it is common in real-world applications for instances to be missing from some views, resulting in incomplete multi-view data. To tackle this problem, we propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning, which aims to use multiple incomplete views as fully as possible in a flexible manner. By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized. To explore the complex relationship between samples and latent representations, a neighborhood constraint and a view-existence constraint are proposed, for the first time, to construct a heterogeneous graph. Finally, to avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model over existing state-of-the-art approaches. Our code is available at: https://github.com/yxjdarren/LHGN_TMM_2022 .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2022.3154592</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5495-5345</orcidid><orcidid>https://orcid.org/0000-0002-4310-9140</orcidid><orcidid>https://orcid.org/0000-0002-2160-7595</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.3033-3045 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2022_3154592 |
source | IEEE Electronic Library (IEL) |
subjects | Correlation Feature extraction Graph learning heterogeneous graph network incomplete multi-view learning Kernel Learning Neural networks Representations Task analysis Uniform resource locators Visualization |
title | Latent Heterogeneous Graph Network for Incomplete Multi-View Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20Heterogeneous%20Graph%20Network%20for%20Incomplete%20Multi-View%20Learning&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Zhu,%20Pengfei&rft.date=2023&rft.volume=25&rft.spage=3033&rft.epage=3045&rft.pages=3033-3045&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2022.3154592&rft_dat=%3Cproquest_RIE%3E2847965066%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847965066&rft_id=info:pmid/&rft_ieee_id=9721669&rfr_iscdi=true |