M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion

Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2023, Vol.25, p.942-952
Hauptverfasser: Bai, Chongyang, Chen, Haipeng, Kumar, Srijan, Leskovec, Jure, Subrahmanian, V. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 952
container_issue
container_start_page 942
container_title IEEE transactions on multimedia
container_volume 25
creator Bai, Chongyang
Chen, Haipeng
Kumar, Srijan
Leskovec, Jure
Subrahmanian, V. S.
description Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our \mathsf{M2P2} (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, \mathsf{M2P2} devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test \mathsf{M2P2} on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. \mathsf{M2P2} significantly outperforms 4 recent baselines on both datasets.
doi_str_mv 10.1109/TMM.2021.3134168
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2021_3134168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9645309</ieee_id><sourcerecordid>2785446654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-dcfd4d9225e1e17f5834d1e7e38de8a946ad1e2c81b68a51f2d1eb05cfbc0af83</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZzW6yK15KsSo02EN7XrbZWUlpm7qbCP57E1o8zTfwvhl4jN0jTBBBP63KcsKB4yTDTGCuLtgItcAUoCgu-yw5pJojXLObGLcAKCQUI_ZS8iV_Tspu19b7xtldsqQQOxvr5pAsA7m6aoe4jvXhK5k6e2zrH0rm3QDcsitvd5HuznPM1vPX1ew9XXy-fcymi7TiQrSpq7wTTnMuCQkLL1UmHFJBmXKkrBa57VdeKdzkykr0vF83ICu_qcB6lY3Z4-nuMTTfHcXWbJsuHPqXhhdKCpHnUvQUnKgqNDEG8uYY6r0NvwbBDI5M78gMjszZUV95OFVqIvrHdS5kBjr7A8l_YfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446654</pqid></control><display><type>article</type><title>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Chongyang ; Chen, Haipeng ; Kumar, Srijan ; Leskovec, Jure ; Subrahmanian, V. S.</creator><creatorcontrib>Bai, Chongyang ; Chen, Haipeng ; Kumar, Srijan ; Leskovec, Jure ; Subrahmanian, V. S.</creatorcontrib><description><![CDATA[Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> significantly outperforms 4 recent baselines on both datasets.]]></description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3134168</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adaptive fusion ; Alignment ; Correlation ; Datasets ; Elections ; Heterogeneity ; Modules ; Multimodal learning ; Noise measurement ; persuasion ; Predictive models ; Training ; Videos ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.942-952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-dcfd4d9225e1e17f5834d1e7e38de8a946ad1e2c81b68a51f2d1eb05cfbc0af83</cites><orcidid>0000-0002-1245-9877 ; 0000-0001-7191-0296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9645309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9645309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Chongyang</creatorcontrib><creatorcontrib>Chen, Haipeng</creatorcontrib><creatorcontrib>Kumar, Srijan</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><creatorcontrib>Subrahmanian, V. S.</creatorcontrib><title>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description><![CDATA[Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> significantly outperforms 4 recent baselines on both datasets.]]></description><subject>adaptive fusion</subject><subject>Alignment</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Elections</subject><subject>Heterogeneity</subject><subject>Modules</subject><subject>Multimodal learning</subject><subject>Noise measurement</subject><subject>persuasion</subject><subject>Predictive models</subject><subject>Training</subject><subject>Videos</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZzW6yK15KsSo02EN7XrbZWUlpm7qbCP57E1o8zTfwvhl4jN0jTBBBP63KcsKB4yTDTGCuLtgItcAUoCgu-yw5pJojXLObGLcAKCQUI_ZS8iV_Tspu19b7xtldsqQQOxvr5pAsA7m6aoe4jvXhK5k6e2zrH0rm3QDcsitvd5HuznPM1vPX1ew9XXy-fcymi7TiQrSpq7wTTnMuCQkLL1UmHFJBmXKkrBa57VdeKdzkykr0vF83ICu_qcB6lY3Z4-nuMTTfHcXWbJsuHPqXhhdKCpHnUvQUnKgqNDEG8uYY6r0NvwbBDI5M78gMjszZUV95OFVqIvrHdS5kBjr7A8l_YfM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bai, Chongyang</creator><creator>Chen, Haipeng</creator><creator>Kumar, Srijan</creator><creator>Leskovec, Jure</creator><creator>Subrahmanian, V. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1245-9877</orcidid><orcidid>https://orcid.org/0000-0001-7191-0296</orcidid></search><sort><creationdate>2023</creationdate><title>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</title><author>Bai, Chongyang ; Chen, Haipeng ; Kumar, Srijan ; Leskovec, Jure ; Subrahmanian, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-dcfd4d9225e1e17f5834d1e7e38de8a946ad1e2c81b68a51f2d1eb05cfbc0af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive fusion</topic><topic>Alignment</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Elections</topic><topic>Heterogeneity</topic><topic>Modules</topic><topic>Multimodal learning</topic><topic>Noise measurement</topic><topic>persuasion</topic><topic>Predictive models</topic><topic>Training</topic><topic>Videos</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Chongyang</creatorcontrib><creatorcontrib>Chen, Haipeng</creatorcontrib><creatorcontrib>Kumar, Srijan</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><creatorcontrib>Subrahmanian, V. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Chongyang</au><au>Chen, Haipeng</au><au>Kumar, Srijan</au><au>Leskovec, Jure</au><au>Subrahmanian, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>942</spage><epage>952</epage><pages>942-952</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract><![CDATA[Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> significantly outperforms 4 recent baselines on both datasets.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3134168</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1245-9877</orcidid><orcidid>https://orcid.org/0000-0001-7191-0296</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2023, Vol.25, p.942-952
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2021_3134168
source IEEE Electronic Library (IEL)
subjects adaptive fusion
Alignment
Correlation
Datasets
Elections
Heterogeneity
Modules
Multimodal learning
Noise measurement
persuasion
Predictive models
Training
Videos
Visualization
title M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M2P2:%20Multimodal%20Persuasion%20Prediction%20Using%20Adaptive%20Fusion&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Bai,%20Chongyang&rft.date=2023&rft.volume=25&rft.spage=942&rft.epage=952&rft.pages=942-952&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3134168&rft_dat=%3Cproquest_RIE%3E2785446654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446654&rft_id=info:pmid/&rft_ieee_id=9645309&rfr_iscdi=true