M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion
Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the pres...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2023, Vol.25, p.942-952 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 952 |
---|---|
container_issue | |
container_start_page | 942 |
container_title | IEEE transactions on multimedia |
container_volume | 25 |
creator | Bai, Chongyang Chen, Haipeng Kumar, Srijan Leskovec, Jure Subrahmanian, V. S. |
description | Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our \mathsf{M2P2} (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, \mathsf{M2P2} devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test \mathsf{M2P2} on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. \mathsf{M2P2} significantly outperforms 4 recent baselines on both datasets. |
doi_str_mv | 10.1109/TMM.2021.3134168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2021_3134168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9645309</ieee_id><sourcerecordid>2785446654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-dcfd4d9225e1e17f5834d1e7e38de8a946ad1e2c81b68a51f2d1eb05cfbc0af83</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZzW6yK15KsSo02EN7XrbZWUlpm7qbCP57E1o8zTfwvhl4jN0jTBBBP63KcsKB4yTDTGCuLtgItcAUoCgu-yw5pJojXLObGLcAKCQUI_ZS8iV_Tspu19b7xtldsqQQOxvr5pAsA7m6aoe4jvXhK5k6e2zrH0rm3QDcsitvd5HuznPM1vPX1ew9XXy-fcymi7TiQrSpq7wTTnMuCQkLL1UmHFJBmXKkrBa57VdeKdzkykr0vF83ICu_qcB6lY3Z4-nuMTTfHcXWbJsuHPqXhhdKCpHnUvQUnKgqNDEG8uYY6r0NvwbBDI5M78gMjszZUV95OFVqIvrHdS5kBjr7A8l_YfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446654</pqid></control><display><type>article</type><title>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Bai, Chongyang ; Chen, Haipeng ; Kumar, Srijan ; Leskovec, Jure ; Subrahmanian, V. S.</creator><creatorcontrib>Bai, Chongyang ; Chen, Haipeng ; Kumar, Srijan ; Leskovec, Jure ; Subrahmanian, V. S.</creatorcontrib><description><![CDATA[Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> significantly outperforms 4 recent baselines on both datasets.]]></description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2021.3134168</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adaptive fusion ; Alignment ; Correlation ; Datasets ; Elections ; Heterogeneity ; Modules ; Multimodal learning ; Noise measurement ; persuasion ; Predictive models ; Training ; Videos ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2023, Vol.25, p.942-952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-dcfd4d9225e1e17f5834d1e7e38de8a946ad1e2c81b68a51f2d1eb05cfbc0af83</cites><orcidid>0000-0002-1245-9877 ; 0000-0001-7191-0296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9645309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9645309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Chongyang</creatorcontrib><creatorcontrib>Chen, Haipeng</creatorcontrib><creatorcontrib>Kumar, Srijan</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><creatorcontrib>Subrahmanian, V. S.</creatorcontrib><title>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description><![CDATA[Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> significantly outperforms 4 recent baselines on both datasets.]]></description><subject>adaptive fusion</subject><subject>Alignment</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Elections</subject><subject>Heterogeneity</subject><subject>Modules</subject><subject>Multimodal learning</subject><subject>Noise measurement</subject><subject>persuasion</subject><subject>Predictive models</subject><subject>Training</subject><subject>Videos</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZzW6yK15KsSo02EN7XrbZWUlpm7qbCP57E1o8zTfwvhl4jN0jTBBBP63KcsKB4yTDTGCuLtgItcAUoCgu-yw5pJojXLObGLcAKCQUI_ZS8iV_Tspu19b7xtldsqQQOxvr5pAsA7m6aoe4jvXhK5k6e2zrH0rm3QDcsitvd5HuznPM1vPX1ew9XXy-fcymi7TiQrSpq7wTTnMuCQkLL1UmHFJBmXKkrBa57VdeKdzkykr0vF83ICu_qcB6lY3Z4-nuMTTfHcXWbJsuHPqXhhdKCpHnUvQUnKgqNDEG8uYY6r0NvwbBDI5M78gMjszZUV95OFVqIvrHdS5kBjr7A8l_YfM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bai, Chongyang</creator><creator>Chen, Haipeng</creator><creator>Kumar, Srijan</creator><creator>Leskovec, Jure</creator><creator>Subrahmanian, V. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1245-9877</orcidid><orcidid>https://orcid.org/0000-0001-7191-0296</orcidid></search><sort><creationdate>2023</creationdate><title>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</title><author>Bai, Chongyang ; Chen, Haipeng ; Kumar, Srijan ; Leskovec, Jure ; Subrahmanian, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-dcfd4d9225e1e17f5834d1e7e38de8a946ad1e2c81b68a51f2d1eb05cfbc0af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive fusion</topic><topic>Alignment</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Elections</topic><topic>Heterogeneity</topic><topic>Modules</topic><topic>Multimodal learning</topic><topic>Noise measurement</topic><topic>persuasion</topic><topic>Predictive models</topic><topic>Training</topic><topic>Videos</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Chongyang</creatorcontrib><creatorcontrib>Chen, Haipeng</creatorcontrib><creatorcontrib>Kumar, Srijan</creatorcontrib><creatorcontrib>Leskovec, Jure</creatorcontrib><creatorcontrib>Subrahmanian, V. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Chongyang</au><au>Chen, Haipeng</au><au>Kumar, Srijan</au><au>Leskovec, Jure</au><au>Subrahmanian, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2023</date><risdate>2023</risdate><volume>25</volume><spage>942</spage><epage>952</epage><pages>942-952</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract><![CDATA[Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules - an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP. <inline-formula><tex-math notation="LaTeX">\mathsf{M2P2}</tex-math></inline-formula> significantly outperforms 4 recent baselines on both datasets.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2021.3134168</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1245-9877</orcidid><orcidid>https://orcid.org/0000-0001-7191-0296</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2023, Vol.25, p.942-952 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2021_3134168 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive fusion Alignment Correlation Datasets Elections Heterogeneity Modules Multimodal learning Noise measurement persuasion Predictive models Training Videos Visualization |
title | M2P2: Multimodal Persuasion Prediction Using Adaptive Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M2P2:%20Multimodal%20Persuasion%20Prediction%20Using%20Adaptive%20Fusion&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Bai,%20Chongyang&rft.date=2023&rft.volume=25&rft.spage=942&rft.epage=952&rft.pages=942-952&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2021.3134168&rft_dat=%3Cproquest_RIE%3E2785446654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446654&rft_id=info:pmid/&rft_ieee_id=9645309&rfr_iscdi=true |