Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection
From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consum...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2016-12, Vol.18 (12), p.2517-2527 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2527 |
---|---|
container_issue | 12 |
container_start_page | 2517 |
container_title | IEEE transactions on multimedia |
container_volume | 18 |
creator | Lee, Joohyun Lee, Kyunghan Han, Choongwoo Kim, Taehoon Chong, Song |
description | From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies. |
doi_str_mv | 10.1109/TMM.2016.2604565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2016_2604565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7556972</ieee_id><sourcerecordid>1842220969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</originalsourceid><addsrcrecordid>eNo9kNtLwzAUh4MoOKfvgi8Fnztza9I8jjEvsE5wEx9Dmp5qZtfOJFX87-3Y8Omch-93Lh9C1wRPCMHqbl0UE4qJmFCBeSayEzQiipMUYylPhz6jOFWU4HN0EcIGY8IzLEdo-QKh672FdF7XzjpoY1J0pWsgKfomui1UziSr6MFsXfuevLn4kUwrs4vuG5IlxJ_OfyYraMBG17WX6Kw2TYCrYx2j1_v5evaYLp4fnmbTRWqZIDGtrMyyiufWiJIJbmhpVUalZcwKJqiRJa2pBWF4DkbwuiwV50wRayRXeWnYGN0e5u5899VDiHozfNEOKzXJOaUUK6EGCh8o67sQPNR6593W-F9NsN5b04M1vbemj9aGyM0h4gDgHx-uFUpS9geoemil</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842220969</pqid></control><display><type>article</type><title>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Joohyun ; Lee, Kyunghan ; Han, Choongwoo ; Kim, Taehoon ; Chong, Song</creator><creatorcontrib>Lee, Joohyun ; Lee, Kyunghan ; Han, Choongwoo ; Kim, Taehoon ; Chong, Song</creatorcontrib><description>From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2016.2604565</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communication energy saving ; Energy consumption ; Heuristic algorithms ; IEEE 802.11 Standard ; Markov decision process ; Mobile communication ; Mobile computing ; mobile video streaming ; Optimization ; resource efficiency ; Scheduling ; Streaming media ; Video transmission ; Wireless networks ; YouTube</subject><ispartof>IEEE transactions on multimedia, 2016-12, Vol.18 (12), p.2517-2527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</citedby><cites>FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7556972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7556972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Joohyun</creatorcontrib><creatorcontrib>Lee, Kyunghan</creatorcontrib><creatorcontrib>Han, Choongwoo</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Chong, Song</creatorcontrib><title>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.</description><subject>Algorithms</subject><subject>Communication energy saving</subject><subject>Energy consumption</subject><subject>Heuristic algorithms</subject><subject>IEEE 802.11 Standard</subject><subject>Markov decision process</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>mobile video streaming</subject><subject>Optimization</subject><subject>resource efficiency</subject><subject>Scheduling</subject><subject>Streaming media</subject><subject>Video transmission</subject><subject>Wireless networks</subject><subject>YouTube</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtLwzAUh4MoOKfvgi8Fnztza9I8jjEvsE5wEx9Dmp5qZtfOJFX87-3Y8Omch-93Lh9C1wRPCMHqbl0UE4qJmFCBeSayEzQiipMUYylPhz6jOFWU4HN0EcIGY8IzLEdo-QKh672FdF7XzjpoY1J0pWsgKfomui1UziSr6MFsXfuevLn4kUwrs4vuG5IlxJ_OfyYraMBG17WX6Kw2TYCrYx2j1_v5evaYLp4fnmbTRWqZIDGtrMyyiufWiJIJbmhpVUalZcwKJqiRJa2pBWF4DkbwuiwV50wRayRXeWnYGN0e5u5899VDiHozfNEOKzXJOaUUK6EGCh8o67sQPNR6593W-F9NsN5b04M1vbemj9aGyM0h4gDgHx-uFUpS9geoemil</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Lee, Joohyun</creator><creator>Lee, Kyunghan</creator><creator>Han, Choongwoo</creator><creator>Kim, Taehoon</creator><creator>Chong, Song</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161201</creationdate><title>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</title><author>Lee, Joohyun ; Lee, Kyunghan ; Han, Choongwoo ; Kim, Taehoon ; Chong, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Communication energy saving</topic><topic>Energy consumption</topic><topic>Heuristic algorithms</topic><topic>IEEE 802.11 Standard</topic><topic>Markov decision process</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>mobile video streaming</topic><topic>Optimization</topic><topic>resource efficiency</topic><topic>Scheduling</topic><topic>Streaming media</topic><topic>Video transmission</topic><topic>Wireless networks</topic><topic>YouTube</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joohyun</creatorcontrib><creatorcontrib>Lee, Kyunghan</creatorcontrib><creatorcontrib>Han, Choongwoo</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Chong, Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Joohyun</au><au>Lee, Kyunghan</au><au>Han, Choongwoo</au><au>Kim, Taehoon</au><au>Chong, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>18</volume><issue>12</issue><spage>2517</spage><epage>2527</epage><pages>2517-2527</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2016.2604565</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2016-12, Vol.18 (12), p.2517-2527 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMM_2016_2604565 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Communication energy saving Energy consumption Heuristic algorithms IEEE 802.11 Standard Markov decision process Mobile communication Mobile computing mobile video streaming Optimization resource efficiency Scheduling Streaming media Video transmission Wireless networks YouTube |
title | Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource-Efficient%20Mobile%20Multimedia%20Streaming%20With%20Adaptive%20Network%20Selection&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lee,%20Joohyun&rft.date=2016-12-01&rft.volume=18&rft.issue=12&rft.spage=2517&rft.epage=2527&rft.pages=2517-2527&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2016.2604565&rft_dat=%3Cproquest_RIE%3E1842220969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842220969&rft_id=info:pmid/&rft_ieee_id=7556972&rfr_iscdi=true |