Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection

From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2016-12, Vol.18 (12), p.2517-2527
Hauptverfasser: Lee, Joohyun, Lee, Kyunghan, Han, Choongwoo, Kim, Taehoon, Chong, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2527
container_issue 12
container_start_page 2517
container_title IEEE transactions on multimedia
container_volume 18
creator Lee, Joohyun
Lee, Kyunghan
Han, Choongwoo
Kim, Taehoon
Chong, Song
description From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.
doi_str_mv 10.1109/TMM.2016.2604565
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMM_2016_2604565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7556972</ieee_id><sourcerecordid>1842220969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</originalsourceid><addsrcrecordid>eNo9kNtLwzAUh4MoOKfvgi8Fnztza9I8jjEvsE5wEx9Dmp5qZtfOJFX87-3Y8Omch-93Lh9C1wRPCMHqbl0UE4qJmFCBeSayEzQiipMUYylPhz6jOFWU4HN0EcIGY8IzLEdo-QKh672FdF7XzjpoY1J0pWsgKfomui1UziSr6MFsXfuevLn4kUwrs4vuG5IlxJ_OfyYraMBG17WX6Kw2TYCrYx2j1_v5evaYLp4fnmbTRWqZIDGtrMyyiufWiJIJbmhpVUalZcwKJqiRJa2pBWF4DkbwuiwV50wRayRXeWnYGN0e5u5899VDiHozfNEOKzXJOaUUK6EGCh8o67sQPNR6593W-F9NsN5b04M1vbemj9aGyM0h4gDgHx-uFUpS9geoemil</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842220969</pqid></control><display><type>article</type><title>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Joohyun ; Lee, Kyunghan ; Han, Choongwoo ; Kim, Taehoon ; Chong, Song</creator><creatorcontrib>Lee, Joohyun ; Lee, Kyunghan ; Han, Choongwoo ; Kim, Taehoon ; Chong, Song</creatorcontrib><description>From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2016.2604565</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Communication energy saving ; Energy consumption ; Heuristic algorithms ; IEEE 802.11 Standard ; Markov decision process ; Mobile communication ; Mobile computing ; mobile video streaming ; Optimization ; resource efficiency ; Scheduling ; Streaming media ; Video transmission ; Wireless networks ; YouTube</subject><ispartof>IEEE transactions on multimedia, 2016-12, Vol.18 (12), p.2517-2527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</citedby><cites>FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7556972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7556972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Joohyun</creatorcontrib><creatorcontrib>Lee, Kyunghan</creatorcontrib><creatorcontrib>Han, Choongwoo</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Chong, Song</creatorcontrib><title>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.</description><subject>Algorithms</subject><subject>Communication energy saving</subject><subject>Energy consumption</subject><subject>Heuristic algorithms</subject><subject>IEEE 802.11 Standard</subject><subject>Markov decision process</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>mobile video streaming</subject><subject>Optimization</subject><subject>resource efficiency</subject><subject>Scheduling</subject><subject>Streaming media</subject><subject>Video transmission</subject><subject>Wireless networks</subject><subject>YouTube</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtLwzAUh4MoOKfvgi8Fnztza9I8jjEvsE5wEx9Dmp5qZtfOJFX87-3Y8Omch-93Lh9C1wRPCMHqbl0UE4qJmFCBeSayEzQiipMUYylPhz6jOFWU4HN0EcIGY8IzLEdo-QKh672FdF7XzjpoY1J0pWsgKfomui1UziSr6MFsXfuevLn4kUwrs4vuG5IlxJ_OfyYraMBG17WX6Kw2TYCrYx2j1_v5evaYLp4fnmbTRWqZIDGtrMyyiufWiJIJbmhpVUalZcwKJqiRJa2pBWF4DkbwuiwV50wRayRXeWnYGN0e5u5899VDiHozfNEOKzXJOaUUK6EGCh8o67sQPNR6593W-F9NsN5b04M1vbemj9aGyM0h4gDgHx-uFUpS9geoemil</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Lee, Joohyun</creator><creator>Lee, Kyunghan</creator><creator>Han, Choongwoo</creator><creator>Kim, Taehoon</creator><creator>Chong, Song</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161201</creationdate><title>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</title><author>Lee, Joohyun ; Lee, Kyunghan ; Han, Choongwoo ; Kim, Taehoon ; Chong, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-dc755d48ca6b364a2bc9527c33c6362a7b2f2ce6a48ea64fbb944391ca7498ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Communication energy saving</topic><topic>Energy consumption</topic><topic>Heuristic algorithms</topic><topic>IEEE 802.11 Standard</topic><topic>Markov decision process</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>mobile video streaming</topic><topic>Optimization</topic><topic>resource efficiency</topic><topic>Scheduling</topic><topic>Streaming media</topic><topic>Video transmission</topic><topic>Wireless networks</topic><topic>YouTube</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joohyun</creatorcontrib><creatorcontrib>Lee, Kyunghan</creatorcontrib><creatorcontrib>Han, Choongwoo</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Chong, Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Joohyun</au><au>Lee, Kyunghan</au><au>Han, Choongwoo</au><au>Kim, Taehoon</au><au>Chong, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>18</volume><issue>12</issue><spage>2517</spage><epage>2527</epage><pages>2517-2527</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>From the advancements of mobile display and network infrastructure, mobile users can enjoy high quality mobile video streaming anywhere, anytime. However, most mobile users are still reluctant to use high quality video streaming when they are mobile due to costly cellular data and high energy consumption. In this work, we develop scheduling algorithms for resource-efficient mobile video streaming, which minimize the weighted sum objective of cellular cost and energy consumption. We first model the scheduling problem as a Markov decision process and propose an optimal scheduling algorithm based on dynamic programming. Then, we derive a heuristic algorithm that approximates the optimal algorithm. To evaluate the performance of proposed algorithms, we run simulation over YouTube video traces with audience retention graphs and mobility/connectivity traces in public transportation (e.g., commuting). Through extensive simulations, we show that our proposed scheduling algorithm has negligible performance loss compared to the optimal scheduling algorithm, where it saves 59% of cellular cost and 41% of energy compared to the YouTube default scheduler. We also implement our scheduling algorithm on an Android platform, and experimentally evaluate the performance compared to existing streaming policies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2016.2604565</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2016-12, Vol.18 (12), p.2517-2527
issn 1520-9210
1941-0077
language eng
recordid cdi_crossref_primary_10_1109_TMM_2016_2604565
source IEEE Electronic Library (IEL)
subjects Algorithms
Communication energy saving
Energy consumption
Heuristic algorithms
IEEE 802.11 Standard
Markov decision process
Mobile communication
Mobile computing
mobile video streaming
Optimization
resource efficiency
Scheduling
Streaming media
Video transmission
Wireless networks
YouTube
title Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource-Efficient%20Mobile%20Multimedia%20Streaming%20With%20Adaptive%20Network%20Selection&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Lee,%20Joohyun&rft.date=2016-12-01&rft.volume=18&rft.issue=12&rft.spage=2517&rft.epage=2527&rft.pages=2517-2527&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2016.2604565&rft_dat=%3Cproquest_RIE%3E1842220969%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842220969&rft_id=info:pmid/&rft_ieee_id=7556972&rfr_iscdi=true