Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing
Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learni...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Machine Learning in Communications and Networking 2024, Vol.2, p.1492-1508 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1508 |
---|---|
container_issue | |
container_start_page | 1492 |
container_title | IEEE Transactions on Machine Learning in Communications and Networking |
container_volume | 2 |
creator | Salehi, Shavbo Zhou, Hao Elsayed, Medhat Bavand, Majid Gaigalas, Raimundas Ozcan, Yigit Erol-Kantarci, Melike |
description | Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario. |
doi_str_mv | 10.1109/TMLCN.2024.3470760 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMLCN_2024_3470760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10699421</ieee_id><sourcerecordid>10_1109_TMLCN_2024_3470760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1080-806ca40a704167e644779eb00a3ef1fda3c6202b4f97851aac61782c8f1cf273</originalsourceid><addsrcrecordid>eNpNkN1KwzAUx4MoOHQvIF7kBTpP0ixpL8ecX3QTXC-8K2l2MsLadKQVEV_ezO1icOAc-H_A-RFyx2DCGOQP5bKYryYcuJikQoGScEFGPEtZkjL5eXl2X5Nx37sapsCkkJkakd91q8NA33TbOr-ls2HQZke139ClG9xWD67zNM4j4p6WQfveYqAf6LztgsEW_UAL1MEf0guv6wY3Ue67r6jSWdN05tgR7XSFw3cXdnTdOBP9t-TK6qbH8WnfkPJpUc5fkuL9-XU-KxLDIIMkA2m0AK1AMKlQCqFUjjWATtEyu9GpkfH5WthcZVOmtZFMZdxklhnLVXpD-LHWhK7vA9pqH1z8-qdiUB0AVv8AqwPA6gQwhu6PIYeIZwGZ54Kz9A_Vhm5e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</title><source>DOAJ Directory of Open Access Journals</source><creator>Salehi, Shavbo ; Zhou, Hao ; Elsayed, Medhat ; Bavand, Majid ; Gaigalas, Raimundas ; Ozcan, Yigit ; Erol-Kantarci, Melike</creator><creatorcontrib>Salehi, Shavbo ; Zhou, Hao ; Elsayed, Medhat ; Bavand, Majid ; Gaigalas, Raimundas ; Ozcan, Yigit ; Erol-Kantarci, Melike</creatorcontrib><description>Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.</description><identifier>ISSN: 2831-316X</identifier><identifier>EISSN: 2831-316X</identifier><identifier>DOI: 10.1109/TMLCN.2024.3470760</identifier><identifier>CODEN: ITMLBB</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep transfer reinforcement learning ; Dynamic scheduling ; Heuristic algorithms ; intelligent jamming attack ; Interference ; Jamming ; jamming attack mitigation ; Network slicing ; Prevention and mitigation ; Q-learning ; Resource management ; Security ; Ultra reliable low latency communication</subject><ispartof>IEEE Transactions on Machine Learning in Communications and Networking, 2024, Vol.2, p.1492-1508</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1080-806ca40a704167e644779eb00a3ef1fda3c6202b4f97851aac61782c8f1cf273</cites><orcidid>0000-0002-5511-4609 ; 0000-0002-1106-6078 ; 0009-0001-2888-0033 ; 0000-0002-8331-0033 ; 0000-0001-6787-8457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Salehi, Shavbo</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Elsayed, Medhat</creatorcontrib><creatorcontrib>Bavand, Majid</creatorcontrib><creatorcontrib>Gaigalas, Raimundas</creatorcontrib><creatorcontrib>Ozcan, Yigit</creatorcontrib><creatorcontrib>Erol-Kantarci, Melike</creatorcontrib><title>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</title><title>IEEE Transactions on Machine Learning in Communications and Networking</title><addtitle>TMLCN</addtitle><description>Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.</description><subject>deep transfer reinforcement learning</subject><subject>Dynamic scheduling</subject><subject>Heuristic algorithms</subject><subject>intelligent jamming attack</subject><subject>Interference</subject><subject>Jamming</subject><subject>jamming attack mitigation</subject><subject>Network slicing</subject><subject>Prevention and mitigation</subject><subject>Q-learning</subject><subject>Resource management</subject><subject>Security</subject><subject>Ultra reliable low latency communication</subject><issn>2831-316X</issn><issn>2831-316X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkN1KwzAUx4MoOHQvIF7kBTpP0ixpL8ecX3QTXC-8K2l2MsLadKQVEV_ezO1icOAc-H_A-RFyx2DCGOQP5bKYryYcuJikQoGScEFGPEtZkjL5eXl2X5Nx37sapsCkkJkakd91q8NA33TbOr-ls2HQZke139ClG9xWD67zNM4j4p6WQfveYqAf6LztgsEW_UAL1MEf0guv6wY3Ue67r6jSWdN05tgR7XSFw3cXdnTdOBP9t-TK6qbH8WnfkPJpUc5fkuL9-XU-KxLDIIMkA2m0AK1AMKlQCqFUjjWATtEyu9GpkfH5WthcZVOmtZFMZdxklhnLVXpD-LHWhK7vA9pqH1z8-qdiUB0AVv8AqwPA6gQwhu6PIYeIZwGZ54Kz9A_Vhm5e</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Salehi, Shavbo</creator><creator>Zhou, Hao</creator><creator>Elsayed, Medhat</creator><creator>Bavand, Majid</creator><creator>Gaigalas, Raimundas</creator><creator>Ozcan, Yigit</creator><creator>Erol-Kantarci, Melike</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5511-4609</orcidid><orcidid>https://orcid.org/0000-0002-1106-6078</orcidid><orcidid>https://orcid.org/0009-0001-2888-0033</orcidid><orcidid>https://orcid.org/0000-0002-8331-0033</orcidid><orcidid>https://orcid.org/0000-0001-6787-8457</orcidid></search><sort><creationdate>2024</creationdate><title>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</title><author>Salehi, Shavbo ; Zhou, Hao ; Elsayed, Medhat ; Bavand, Majid ; Gaigalas, Raimundas ; Ozcan, Yigit ; Erol-Kantarci, Melike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1080-806ca40a704167e644779eb00a3ef1fda3c6202b4f97851aac61782c8f1cf273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep transfer reinforcement learning</topic><topic>Dynamic scheduling</topic><topic>Heuristic algorithms</topic><topic>intelligent jamming attack</topic><topic>Interference</topic><topic>Jamming</topic><topic>jamming attack mitigation</topic><topic>Network slicing</topic><topic>Prevention and mitigation</topic><topic>Q-learning</topic><topic>Resource management</topic><topic>Security</topic><topic>Ultra reliable low latency communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salehi, Shavbo</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Elsayed, Medhat</creatorcontrib><creatorcontrib>Bavand, Majid</creatorcontrib><creatorcontrib>Gaigalas, Raimundas</creatorcontrib><creatorcontrib>Ozcan, Yigit</creatorcontrib><creatorcontrib>Erol-Kantarci, Melike</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE Transactions on Machine Learning in Communications and Networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salehi, Shavbo</au><au>Zhou, Hao</au><au>Elsayed, Medhat</au><au>Bavand, Majid</au><au>Gaigalas, Raimundas</au><au>Ozcan, Yigit</au><au>Erol-Kantarci, Melike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</atitle><jtitle>IEEE Transactions on Machine Learning in Communications and Networking</jtitle><stitle>TMLCN</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>1492</spage><epage>1508</epage><pages>1492-1508</pages><issn>2831-316X</issn><eissn>2831-316X</eissn><coden>ITMLBB</coden><abstract>Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.</abstract><pub>IEEE</pub><doi>10.1109/TMLCN.2024.3470760</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5511-4609</orcidid><orcidid>https://orcid.org/0000-0002-1106-6078</orcidid><orcidid>https://orcid.org/0009-0001-2888-0033</orcidid><orcidid>https://orcid.org/0000-0002-8331-0033</orcidid><orcidid>https://orcid.org/0000-0001-6787-8457</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2831-316X |
ispartof | IEEE Transactions on Machine Learning in Communications and Networking, 2024, Vol.2, p.1492-1508 |
issn | 2831-316X 2831-316X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMLCN_2024_3470760 |
source | DOAJ Directory of Open Access Journals |
subjects | deep transfer reinforcement learning Dynamic scheduling Heuristic algorithms intelligent jamming attack Interference Jamming jamming attack mitigation Network slicing Prevention and mitigation Q-learning Resource management Security Ultra reliable low latency communication |
title | Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Jamming%20Attack%20and%20Mitigation%20on%20Deep%20Transfer%20Reinforcement%20Learning%20Enabled%20Resource%20Allocation%20for%20Network%20Slicing&rft.jtitle=IEEE%20Transactions%20on%20Machine%20Learning%20in%20Communications%20and%20Networking&rft.au=Salehi,%20Shavbo&rft.date=2024&rft.volume=2&rft.spage=1492&rft.epage=1508&rft.pages=1492-1508&rft.issn=2831-316X&rft.eissn=2831-316X&rft.coden=ITMLBB&rft_id=info:doi/10.1109/TMLCN.2024.3470760&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMLCN_2024_3470760%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10699421&rfr_iscdi=true |