Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing

Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Machine Learning in Communications and Networking 2024, Vol.2, p.1492-1508
Hauptverfasser: Salehi, Shavbo, Zhou, Hao, Elsayed, Medhat, Bavand, Majid, Gaigalas, Raimundas, Ozcan, Yigit, Erol-Kantarci, Melike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1508
container_issue
container_start_page 1492
container_title IEEE Transactions on Machine Learning in Communications and Networking
container_volume 2
creator Salehi, Shavbo
Zhou, Hao
Elsayed, Medhat
Bavand, Majid
Gaigalas, Raimundas
Ozcan, Yigit
Erol-Kantarci, Melike
description Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.
doi_str_mv 10.1109/TMLCN.2024.3470760
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMLCN_2024_3470760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10699421</ieee_id><sourcerecordid>10_1109_TMLCN_2024_3470760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1080-806ca40a704167e644779eb00a3ef1fda3c6202b4f97851aac61782c8f1cf273</originalsourceid><addsrcrecordid>eNpNkN1KwzAUx4MoOHQvIF7kBTpP0ixpL8ecX3QTXC-8K2l2MsLadKQVEV_ezO1icOAc-H_A-RFyx2DCGOQP5bKYryYcuJikQoGScEFGPEtZkjL5eXl2X5Nx37sapsCkkJkakd91q8NA33TbOr-ls2HQZke139ClG9xWD67zNM4j4p6WQfveYqAf6LztgsEW_UAL1MEf0guv6wY3Ue67r6jSWdN05tgR7XSFw3cXdnTdOBP9t-TK6qbH8WnfkPJpUc5fkuL9-XU-KxLDIIMkA2m0AK1AMKlQCqFUjjWATtEyu9GpkfH5WthcZVOmtZFMZdxklhnLVXpD-LHWhK7vA9pqH1z8-qdiUB0AVv8AqwPA6gQwhu6PIYeIZwGZ54Kz9A_Vhm5e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</title><source>DOAJ Directory of Open Access Journals</source><creator>Salehi, Shavbo ; Zhou, Hao ; Elsayed, Medhat ; Bavand, Majid ; Gaigalas, Raimundas ; Ozcan, Yigit ; Erol-Kantarci, Melike</creator><creatorcontrib>Salehi, Shavbo ; Zhou, Hao ; Elsayed, Medhat ; Bavand, Majid ; Gaigalas, Raimundas ; Ozcan, Yigit ; Erol-Kantarci, Melike</creatorcontrib><description>Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.</description><identifier>ISSN: 2831-316X</identifier><identifier>EISSN: 2831-316X</identifier><identifier>DOI: 10.1109/TMLCN.2024.3470760</identifier><identifier>CODEN: ITMLBB</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep transfer reinforcement learning ; Dynamic scheduling ; Heuristic algorithms ; intelligent jamming attack ; Interference ; Jamming ; jamming attack mitigation ; Network slicing ; Prevention and mitigation ; Q-learning ; Resource management ; Security ; Ultra reliable low latency communication</subject><ispartof>IEEE Transactions on Machine Learning in Communications and Networking, 2024, Vol.2, p.1492-1508</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1080-806ca40a704167e644779eb00a3ef1fda3c6202b4f97851aac61782c8f1cf273</cites><orcidid>0000-0002-5511-4609 ; 0000-0002-1106-6078 ; 0009-0001-2888-0033 ; 0000-0002-8331-0033 ; 0000-0001-6787-8457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Salehi, Shavbo</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Elsayed, Medhat</creatorcontrib><creatorcontrib>Bavand, Majid</creatorcontrib><creatorcontrib>Gaigalas, Raimundas</creatorcontrib><creatorcontrib>Ozcan, Yigit</creatorcontrib><creatorcontrib>Erol-Kantarci, Melike</creatorcontrib><title>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</title><title>IEEE Transactions on Machine Learning in Communications and Networking</title><addtitle>TMLCN</addtitle><description>Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.</description><subject>deep transfer reinforcement learning</subject><subject>Dynamic scheduling</subject><subject>Heuristic algorithms</subject><subject>intelligent jamming attack</subject><subject>Interference</subject><subject>Jamming</subject><subject>jamming attack mitigation</subject><subject>Network slicing</subject><subject>Prevention and mitigation</subject><subject>Q-learning</subject><subject>Resource management</subject><subject>Security</subject><subject>Ultra reliable low latency communication</subject><issn>2831-316X</issn><issn>2831-316X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkN1KwzAUx4MoOHQvIF7kBTpP0ixpL8ecX3QTXC-8K2l2MsLadKQVEV_ezO1icOAc-H_A-RFyx2DCGOQP5bKYryYcuJikQoGScEFGPEtZkjL5eXl2X5Nx37sapsCkkJkakd91q8NA33TbOr-ls2HQZke139ClG9xWD67zNM4j4p6WQfveYqAf6LztgsEW_UAL1MEf0guv6wY3Ue67r6jSWdN05tgR7XSFw3cXdnTdOBP9t-TK6qbH8WnfkPJpUc5fkuL9-XU-KxLDIIMkA2m0AK1AMKlQCqFUjjWATtEyu9GpkfH5WthcZVOmtZFMZdxklhnLVXpD-LHWhK7vA9pqH1z8-qdiUB0AVv8AqwPA6gQwhu6PIYeIZwGZ54Kz9A_Vhm5e</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Salehi, Shavbo</creator><creator>Zhou, Hao</creator><creator>Elsayed, Medhat</creator><creator>Bavand, Majid</creator><creator>Gaigalas, Raimundas</creator><creator>Ozcan, Yigit</creator><creator>Erol-Kantarci, Melike</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5511-4609</orcidid><orcidid>https://orcid.org/0000-0002-1106-6078</orcidid><orcidid>https://orcid.org/0009-0001-2888-0033</orcidid><orcidid>https://orcid.org/0000-0002-8331-0033</orcidid><orcidid>https://orcid.org/0000-0001-6787-8457</orcidid></search><sort><creationdate>2024</creationdate><title>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</title><author>Salehi, Shavbo ; Zhou, Hao ; Elsayed, Medhat ; Bavand, Majid ; Gaigalas, Raimundas ; Ozcan, Yigit ; Erol-Kantarci, Melike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1080-806ca40a704167e644779eb00a3ef1fda3c6202b4f97851aac61782c8f1cf273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep transfer reinforcement learning</topic><topic>Dynamic scheduling</topic><topic>Heuristic algorithms</topic><topic>intelligent jamming attack</topic><topic>Interference</topic><topic>Jamming</topic><topic>jamming attack mitigation</topic><topic>Network slicing</topic><topic>Prevention and mitigation</topic><topic>Q-learning</topic><topic>Resource management</topic><topic>Security</topic><topic>Ultra reliable low latency communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salehi, Shavbo</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Elsayed, Medhat</creatorcontrib><creatorcontrib>Bavand, Majid</creatorcontrib><creatorcontrib>Gaigalas, Raimundas</creatorcontrib><creatorcontrib>Ozcan, Yigit</creatorcontrib><creatorcontrib>Erol-Kantarci, Melike</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE Transactions on Machine Learning in Communications and Networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salehi, Shavbo</au><au>Zhou, Hao</au><au>Elsayed, Medhat</au><au>Bavand, Majid</au><au>Gaigalas, Raimundas</au><au>Ozcan, Yigit</au><au>Erol-Kantarci, Melike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing</atitle><jtitle>IEEE Transactions on Machine Learning in Communications and Networking</jtitle><stitle>TMLCN</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>1492</spage><epage>1508</epage><pages>1492-1508</pages><issn>2831-316X</issn><eissn>2831-316X</eissn><coden>ITMLBB</coden><abstract>Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.</abstract><pub>IEEE</pub><doi>10.1109/TMLCN.2024.3470760</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5511-4609</orcidid><orcidid>https://orcid.org/0000-0002-1106-6078</orcidid><orcidid>https://orcid.org/0009-0001-2888-0033</orcidid><orcidid>https://orcid.org/0000-0002-8331-0033</orcidid><orcidid>https://orcid.org/0000-0001-6787-8457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2831-316X
ispartof IEEE Transactions on Machine Learning in Communications and Networking, 2024, Vol.2, p.1492-1508
issn 2831-316X
2831-316X
language eng
recordid cdi_crossref_primary_10_1109_TMLCN_2024_3470760
source DOAJ Directory of Open Access Journals
subjects deep transfer reinforcement learning
Dynamic scheduling
Heuristic algorithms
intelligent jamming attack
Interference
Jamming
jamming attack mitigation
Network slicing
Prevention and mitigation
Q-learning
Resource management
Security
Ultra reliable low latency communication
title Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Jamming%20Attack%20and%20Mitigation%20on%20Deep%20Transfer%20Reinforcement%20Learning%20Enabled%20Resource%20Allocation%20for%20Network%20Slicing&rft.jtitle=IEEE%20Transactions%20on%20Machine%20Learning%20in%20Communications%20and%20Networking&rft.au=Salehi,%20Shavbo&rft.date=2024&rft.volume=2&rft.spage=1492&rft.epage=1508&rft.pages=1492-1508&rft.issn=2831-316X&rft.eissn=2831-316X&rft.coden=ITMLBB&rft_id=info:doi/10.1109/TMLCN.2024.3470760&rft_dat=%3Ccrossref_ieee_%3E10_1109_TMLCN_2024_3470760%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10699421&rfr_iscdi=true