MARS-GAN: Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke
Surgical smoke caused poor visibility during laparoscopic surgery, the smoke removal is important to improve the safety and efficiency of the surgery. We propose the Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke (MARS-GAN) in this work....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2023-08, Vol.42 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | 42 |
creator | Hong, Tingxuan Huang, Pu Zhai, Xiangyu Gu, Changming Tian, Baolong Jin, Bin Li, Dengwang |
description | Surgical smoke caused poor visibility during laparoscopic surgery, the smoke removal is important to improve the safety and efficiency of the surgery. We propose the Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke (MARS-GAN) in this work. MARS-GAN incorporates multilevel smoke feature learning, smoke attention learning, and multi-task learning together. Specifically, the multilevel smoke feature learning adopts the multilevel strategy to adaptively learn non-homogeneity smoke intensity and area features with specific branches and integrates comprehensive features to preserve both semantic and textural information with pyramidal connections. The smoke attention learning extends the smoke segmentation module with the dark channel prior module to provide the pixel-wise measurement for focusing on the smoke features while preserving the smokeless details. And the multi-task learning strategy fuses the adversarial loss, cyclic consistency loss, smoke perception loss, dark channel prior loss, and contrast enhancement loss to help the model optimization. Furthermore, a paired smokeless/smoky dataset is synthesized for elevating smoke recognition ability. The experimental results show that MARS-GAN outperforms the comparative methods for removing surgical smoke on both synthetic/real laparoscopic surgical images, with the potential to be embedded in laparoscopic devices for smoke removal. |
doi_str_mv | 10.1109/TMI.2023.3245298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2023_3245298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044724</ieee_id><sourcerecordid>2797150025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d2c82167cd9bfa736f24b0d504cef907ba436383b28a5c7c6d5840aa04f3c23f3</originalsourceid><addsrcrecordid>eNpdkc9r1EAUgAdR7LZ69yAS8NLLrC_zIzPxFoquhW6FbgVvw2TyUtImmXZmkuJ_b5ZdRTy9w_vex4OPkHc5rPMcyk-328s1A8bXnAnJSv2CrHIpNWVS_HxJVsCUpgAFOyGnMd4D5EJC-ZqccAWMaaVXZN5WNzu6qa4_Z9upT12PM_a0RZumgLRHG8ZuvMuqlHBMnR-pfbYBs9pGbLINjhhs6mbMqmbGEG3obJ9dY3r24SFrfchucPDz3rCbwl3nlu1u8A_4hrxqbR_x7XGekR9fv9xefKNX3zeXF9UVdVzoRBvmNMsL5Zqybq3iRctEDY0E4bAtQdVW8IJrXjNtpVOuaKQWYC2IljvGW35Gzg_ex-CfJozJDF102Pd2RD9Fw1SpcgnA5IJ-_A-991MYl-8M00LoMtdcLBQcKBd8jAFb8xi6wYZfJgezb2KWJmbfxBybLCcfjuKpHrD5e_AnwgK8PwAdIv7jAyEUE_w3_hSQZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844891834</pqid></control><display><type>article</type><title>MARS-GAN: Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke</title><source>IEEE Electronic Library (IEL)</source><creator>Hong, Tingxuan ; Huang, Pu ; Zhai, Xiangyu ; Gu, Changming ; Tian, Baolong ; Jin, Bin ; Li, Dengwang</creator><creatorcontrib>Hong, Tingxuan ; Huang, Pu ; Zhai, Xiangyu ; Gu, Changming ; Tian, Baolong ; Jin, Bin ; Li, Dengwang</creatorcontrib><description>Surgical smoke caused poor visibility during laparoscopic surgery, the smoke removal is important to improve the safety and efficiency of the surgery. We propose the Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke (MARS-GAN) in this work. MARS-GAN incorporates multilevel smoke feature learning, smoke attention learning, and multi-task learning together. Specifically, the multilevel smoke feature learning adopts the multilevel strategy to adaptively learn non-homogeneity smoke intensity and area features with specific branches and integrates comprehensive features to preserve both semantic and textural information with pyramidal connections. The smoke attention learning extends the smoke segmentation module with the dark channel prior module to provide the pixel-wise measurement for focusing on the smoke features while preserving the smokeless details. And the multi-task learning strategy fuses the adversarial loss, cyclic consistency loss, smoke perception loss, dark channel prior loss, and contrast enhancement loss to help the model optimization. Furthermore, a paired smokeless/smoky dataset is synthesized for elevating smoke recognition ability. The experimental results show that MARS-GAN outperforms the comparative methods for removing surgical smoke on both synthetic/real laparoscopic surgical images, with the potential to be embedded in laparoscopic devices for smoke removal.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3245298</identifier><identifier>PMID: 37022878</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Atmospheric modeling ; Attention task ; generative adversarial learning ; Generative adversarial networks ; Homogeneity ; Image color analysis ; Image segmentation ; Laparoscopes ; Laparoscopic surgery ; Laparoscopy ; Learning ; Modules ; multi-task learning ; Multilevel ; Multitasking ; Optimization ; Representation learning ; Scattering ; Smoke ; smoke attention ; Surgery</subject><ispartof>IEEE transactions on medical imaging, 2023-08, Vol.42 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-d2c82167cd9bfa736f24b0d504cef907ba436383b28a5c7c6d5840aa04f3c23f3</citedby><cites>FETCH-LOGICAL-c348t-d2c82167cd9bfa736f24b0d504cef907ba436383b28a5c7c6d5840aa04f3c23f3</cites><orcidid>0000-0001-9306-4924 ; 0000-0001-5126-3888 ; 0000-0001-5299-0104 ; 0000-0001-7603-5769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Tingxuan</creatorcontrib><creatorcontrib>Huang, Pu</creatorcontrib><creatorcontrib>Zhai, Xiangyu</creatorcontrib><creatorcontrib>Gu, Changming</creatorcontrib><creatorcontrib>Tian, Baolong</creatorcontrib><creatorcontrib>Jin, Bin</creatorcontrib><creatorcontrib>Li, Dengwang</creatorcontrib><title>MARS-GAN: Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Surgical smoke caused poor visibility during laparoscopic surgery, the smoke removal is important to improve the safety and efficiency of the surgery. We propose the Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke (MARS-GAN) in this work. MARS-GAN incorporates multilevel smoke feature learning, smoke attention learning, and multi-task learning together. Specifically, the multilevel smoke feature learning adopts the multilevel strategy to adaptively learn non-homogeneity smoke intensity and area features with specific branches and integrates comprehensive features to preserve both semantic and textural information with pyramidal connections. The smoke attention learning extends the smoke segmentation module with the dark channel prior module to provide the pixel-wise measurement for focusing on the smoke features while preserving the smokeless details. And the multi-task learning strategy fuses the adversarial loss, cyclic consistency loss, smoke perception loss, dark channel prior loss, and contrast enhancement loss to help the model optimization. Furthermore, a paired smokeless/smoky dataset is synthesized for elevating smoke recognition ability. The experimental results show that MARS-GAN outperforms the comparative methods for removing surgical smoke on both synthetic/real laparoscopic surgical images, with the potential to be embedded in laparoscopic devices for smoke removal.</description><subject>Adaptation models</subject><subject>Atmospheric modeling</subject><subject>Attention task</subject><subject>generative adversarial learning</subject><subject>Generative adversarial networks</subject><subject>Homogeneity</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Laparoscopes</subject><subject>Laparoscopic surgery</subject><subject>Laparoscopy</subject><subject>Learning</subject><subject>Modules</subject><subject>multi-task learning</subject><subject>Multilevel</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Representation learning</subject><subject>Scattering</subject><subject>Smoke</subject><subject>smoke attention</subject><subject>Surgery</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9r1EAUgAdR7LZ69yAS8NLLrC_zIzPxFoquhW6FbgVvw2TyUtImmXZmkuJ_b5ZdRTy9w_vex4OPkHc5rPMcyk-328s1A8bXnAnJSv2CrHIpNWVS_HxJVsCUpgAFOyGnMd4D5EJC-ZqccAWMaaVXZN5WNzu6qa4_Z9upT12PM_a0RZumgLRHG8ZuvMuqlHBMnR-pfbYBs9pGbLINjhhs6mbMqmbGEG3obJ9dY3r24SFrfchucPDz3rCbwl3nlu1u8A_4hrxqbR_x7XGekR9fv9xefKNX3zeXF9UVdVzoRBvmNMsL5Zqybq3iRctEDY0E4bAtQdVW8IJrXjNtpVOuaKQWYC2IljvGW35Gzg_ex-CfJozJDF102Pd2RD9Fw1SpcgnA5IJ-_A-991MYl-8M00LoMtdcLBQcKBd8jAFb8xi6wYZfJgezb2KWJmbfxBybLCcfjuKpHrD5e_AnwgK8PwAdIv7jAyEUE_w3_hSQZQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hong, Tingxuan</creator><creator>Huang, Pu</creator><creator>Zhai, Xiangyu</creator><creator>Gu, Changming</creator><creator>Tian, Baolong</creator><creator>Jin, Bin</creator><creator>Li, Dengwang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9306-4924</orcidid><orcidid>https://orcid.org/0000-0001-5126-3888</orcidid><orcidid>https://orcid.org/0000-0001-5299-0104</orcidid><orcidid>https://orcid.org/0000-0001-7603-5769</orcidid></search><sort><creationdate>20230801</creationdate><title>MARS-GAN: Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke</title><author>Hong, Tingxuan ; Huang, Pu ; Zhai, Xiangyu ; Gu, Changming ; Tian, Baolong ; Jin, Bin ; Li, Dengwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d2c82167cd9bfa736f24b0d504cef907ba436383b28a5c7c6d5840aa04f3c23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Atmospheric modeling</topic><topic>Attention task</topic><topic>generative adversarial learning</topic><topic>Generative adversarial networks</topic><topic>Homogeneity</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Laparoscopes</topic><topic>Laparoscopic surgery</topic><topic>Laparoscopy</topic><topic>Learning</topic><topic>Modules</topic><topic>multi-task learning</topic><topic>Multilevel</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Representation learning</topic><topic>Scattering</topic><topic>Smoke</topic><topic>smoke attention</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Tingxuan</creatorcontrib><creatorcontrib>Huang, Pu</creatorcontrib><creatorcontrib>Zhai, Xiangyu</creatorcontrib><creatorcontrib>Gu, Changming</creatorcontrib><creatorcontrib>Tian, Baolong</creatorcontrib><creatorcontrib>Jin, Bin</creatorcontrib><creatorcontrib>Li, Dengwang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Tingxuan</au><au>Huang, Pu</au><au>Zhai, Xiangyu</au><au>Gu, Changming</au><au>Tian, Baolong</au><au>Jin, Bin</au><au>Li, Dengwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MARS-GAN: Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Surgical smoke caused poor visibility during laparoscopic surgery, the smoke removal is important to improve the safety and efficiency of the surgery. We propose the Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke (MARS-GAN) in this work. MARS-GAN incorporates multilevel smoke feature learning, smoke attention learning, and multi-task learning together. Specifically, the multilevel smoke feature learning adopts the multilevel strategy to adaptively learn non-homogeneity smoke intensity and area features with specific branches and integrates comprehensive features to preserve both semantic and textural information with pyramidal connections. The smoke attention learning extends the smoke segmentation module with the dark channel prior module to provide the pixel-wise measurement for focusing on the smoke features while preserving the smokeless details. And the multi-task learning strategy fuses the adversarial loss, cyclic consistency loss, smoke perception loss, dark channel prior loss, and contrast enhancement loss to help the model optimization. Furthermore, a paired smokeless/smoky dataset is synthesized for elevating smoke recognition ability. The experimental results show that MARS-GAN outperforms the comparative methods for removing surgical smoke on both synthetic/real laparoscopic surgical images, with the potential to be embedded in laparoscopic devices for smoke removal.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022878</pmid><doi>10.1109/TMI.2023.3245298</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9306-4924</orcidid><orcidid>https://orcid.org/0000-0001-5126-3888</orcidid><orcidid>https://orcid.org/0000-0001-5299-0104</orcidid><orcidid>https://orcid.org/0000-0001-7603-5769</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2023-08, Vol.42 (8), p.1-1 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2023_3245298 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Atmospheric modeling Attention task generative adversarial learning Generative adversarial networks Homogeneity Image color analysis Image segmentation Laparoscopes Laparoscopic surgery Laparoscopy Learning Modules multi-task learning Multilevel Multitasking Optimization Representation learning Scattering Smoke smoke attention Surgery |
title | MARS-GAN: Multilevel-feature-learning Attention-aware based Generative Adversarial Network for Removing Surgical Smoke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MARS-GAN:%20Multilevel-feature-learning%20Attention-aware%20based%20Generative%20Adversarial%20Network%20for%20Removing%20Surgical%20Smoke&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Hong,%20Tingxuan&rft.date=2023-08-01&rft.volume=42&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3245298&rft_dat=%3Cproquest_RIE%3E2797150025%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844891834&rft_id=info:pmid/37022878&rft_ieee_id=10044724&rfr_iscdi=true |