GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images

Chronic Glaucoma is an eye disease with progressive optic nerve damage. It is the second leading cause of blindness after cataract and the first leading cause of irreversible blindness. Glaucoma forecast can predict future eye state of a patient by analyzing the historical fundus images, which is he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-06, Vol.42 (6), p.1-1
Hauptverfasser: Hu, Xiaoyan, Zhang, Ling-Xiao, Gao, Lin, Dai, Weiwei, Han, Xiaoguang, Lai, Yu-Kun, Chen, Yiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 42
creator Hu, Xiaoyan
Zhang, Ling-Xiao
Gao, Lin
Dai, Weiwei
Han, Xiaoguang
Lai, Yu-Kun
Chen, Yiqiang
description Chronic Glaucoma is an eye disease with progressive optic nerve damage. It is the second leading cause of blindness after cataract and the first leading cause of irreversible blindness. Glaucoma forecast can predict future eye state of a patient by analyzing the historical fundus images, which is helpful for early detection and intervention of potential patients and avoiding the outcome of blindness. In this paper, we propose a GLaucoma forecast transformer based on Irregularly saMpled fundus images named GLIM-Net to predict the probability of developing glaucoma in the future. The main challenge is that the existing fundus images are often sampled at irregular times, making it difficult to accurately capture the subtle progression of glaucoma over time. We therefore introduce two novel modules, namely time positional encoding and time-sensitive MSA (multi-head self-attention) modules, to address this challenge. Unlike many existing works that focus on prediction for an unspecified future time, we also propose an extended model which is further capable of prediction conditioned on a specific future time. The experimental results on the benchmark dataset SIGF show that the accuracy of our method outperforms the state-of-the-art models. In addition, the ablation experiments also confirm the effectiveness of the two modules we propose, which can provide a good reference for the optimization of Transformer models.
doi_str_mv 10.1109/TMI.2023.3243692
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2023_3243692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10041214</ieee_id><sourcerecordid>2797149894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-abdebec290c59e8ae34455a2de550b83e6b287653f74a87d5894a4f4551ab5103</originalsourceid><addsrcrecordid>eNpdkEtPGzEUhS0EKoF230WFLLFhM-n1K7bZoYikI4V2QSp1Zzwzd2DQPII9s-DfY5S0qlidzXeOjj5CvjKYMwb2-_Yun3PgYi64FAvLj8iMKWUyruSfYzIDrk0GsOCn5CzGZwAmFdhP5FRo4NwwNSMP601-l_3E8Zoun8LQNyVdt34qh87T1RCw9HGk2-D7WA-hw0BT0DwEfJxaH9pXeu-7XYsVvceXCfux8S1dTX01RZp3_hHjZ3JS-zbil0Oek9-r2-3yR7b5tc6XN5usFBbGzBcVFlhyC6WyaDwKKZXyvEKloDACFwU3eqFEraU3ulLGSi_rxDBfKAbinFztd3dhSE_i6Lomlti2vsdhio5rq5m0qZbQyw_o8zCFPr1z3HCmmVbWJgr2VBmGGAPWbheazodXx8C923fJvnu37w72U-XiMDwVHVb_Cn91J-DbHmgQ8b89kIwzKd4AcGmH0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821717599</pqid></control><display><type>article</type><title>GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Xiaoyan ; Zhang, Ling-Xiao ; Gao, Lin ; Dai, Weiwei ; Han, Xiaoguang ; Lai, Yu-Kun ; Chen, Yiqiang</creator><creatorcontrib>Hu, Xiaoyan ; Zhang, Ling-Xiao ; Gao, Lin ; Dai, Weiwei ; Han, Xiaoguang ; Lai, Yu-Kun ; Chen, Yiqiang</creatorcontrib><description>Chronic Glaucoma is an eye disease with progressive optic nerve damage. It is the second leading cause of blindness after cataract and the first leading cause of irreversible blindness. Glaucoma forecast can predict future eye state of a patient by analyzing the historical fundus images, which is helpful for early detection and intervention of potential patients and avoiding the outcome of blindness. In this paper, we propose a GLaucoma forecast transformer based on Irregularly saMpled fundus images named GLIM-Net to predict the probability of developing glaucoma in the future. The main challenge is that the existing fundus images are often sampled at irregular times, making it difficult to accurately capture the subtle progression of glaucoma over time. We therefore introduce two novel modules, namely time positional encoding and time-sensitive MSA (multi-head self-attention) modules, to address this challenge. Unlike many existing works that focus on prediction for an unspecified future time, we also propose an extended model which is further capable of prediction conditioned on a specific future time. The experimental results on the benchmark dataset SIGF show that the accuracy of our method outperforms the state-of-the-art models. In addition, the ablation experiments also confirm the effectiveness of the two modules we propose, which can provide a good reference for the optimization of Transformer models.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3243692</identifier><identifier>PMID: 37022815</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Ablation ; attention mechanism ; Biomedical imaging ; Blindness ; Cataracts ; Deep learning ; Eye ; Eye diseases ; Feature extraction ; fundus image ; Fundus Oculi ; Glaucoma ; Glaucoma - diagnostic imaging ; Glaucoma forecast ; Humans ; Image segmentation ; Mathematical models ; Medical imaging ; Modules ; Optic nerve ; Optimization ; Predictive models ; Task analysis ; transformer ; Transformers</subject><ispartof>IEEE transactions on medical imaging, 2023-06, Vol.42 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-abdebec290c59e8ae34455a2de550b83e6b287653f74a87d5894a4f4551ab5103</citedby><cites>FETCH-LOGICAL-c390t-abdebec290c59e8ae34455a2de550b83e6b287653f74a87d5894a4f4551ab5103</cites><orcidid>0000-0002-1021-8148 ; 0000-0003-0162-3296 ; 0000-0002-8407-0780 ; 0000-0002-5158-9949 ; 0000-0001-8922-7639 ; 0000-0002-2094-5680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10041214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10041214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Ling-Xiao</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><creatorcontrib>Dai, Weiwei</creatorcontrib><creatorcontrib>Han, Xiaoguang</creatorcontrib><creatorcontrib>Lai, Yu-Kun</creatorcontrib><creatorcontrib>Chen, Yiqiang</creatorcontrib><title>GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Chronic Glaucoma is an eye disease with progressive optic nerve damage. It is the second leading cause of blindness after cataract and the first leading cause of irreversible blindness. Glaucoma forecast can predict future eye state of a patient by analyzing the historical fundus images, which is helpful for early detection and intervention of potential patients and avoiding the outcome of blindness. In this paper, we propose a GLaucoma forecast transformer based on Irregularly saMpled fundus images named GLIM-Net to predict the probability of developing glaucoma in the future. The main challenge is that the existing fundus images are often sampled at irregular times, making it difficult to accurately capture the subtle progression of glaucoma over time. We therefore introduce two novel modules, namely time positional encoding and time-sensitive MSA (multi-head self-attention) modules, to address this challenge. Unlike many existing works that focus on prediction for an unspecified future time, we also propose an extended model which is further capable of prediction conditioned on a specific future time. The experimental results on the benchmark dataset SIGF show that the accuracy of our method outperforms the state-of-the-art models. In addition, the ablation experiments also confirm the effectiveness of the two modules we propose, which can provide a good reference for the optimization of Transformer models.</description><subject>Ablation</subject><subject>attention mechanism</subject><subject>Biomedical imaging</subject><subject>Blindness</subject><subject>Cataracts</subject><subject>Deep learning</subject><subject>Eye</subject><subject>Eye diseases</subject><subject>Feature extraction</subject><subject>fundus image</subject><subject>Fundus Oculi</subject><subject>Glaucoma</subject><subject>Glaucoma - diagnostic imaging</subject><subject>Glaucoma forecast</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Optic nerve</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Task analysis</subject><subject>transformer</subject><subject>Transformers</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtPGzEUhS0EKoF230WFLLFhM-n1K7bZoYikI4V2QSp1Zzwzd2DQPII9s-DfY5S0qlidzXeOjj5CvjKYMwb2-_Yun3PgYi64FAvLj8iMKWUyruSfYzIDrk0GsOCn5CzGZwAmFdhP5FRo4NwwNSMP601-l_3E8Zoun8LQNyVdt34qh87T1RCw9HGk2-D7WA-hw0BT0DwEfJxaH9pXeu-7XYsVvceXCfux8S1dTX01RZp3_hHjZ3JS-zbil0Oek9-r2-3yR7b5tc6XN5usFBbGzBcVFlhyC6WyaDwKKZXyvEKloDACFwU3eqFEraU3ulLGSi_rxDBfKAbinFztd3dhSE_i6Lomlti2vsdhio5rq5m0qZbQyw_o8zCFPr1z3HCmmVbWJgr2VBmGGAPWbheazodXx8C923fJvnu37w72U-XiMDwVHVb_Cn91J-DbHmgQ8b89kIwzKd4AcGmH0w</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Xiaoyan</creator><creator>Zhang, Ling-Xiao</creator><creator>Gao, Lin</creator><creator>Dai, Weiwei</creator><creator>Han, Xiaoguang</creator><creator>Lai, Yu-Kun</creator><creator>Chen, Yiqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1021-8148</orcidid><orcidid>https://orcid.org/0000-0003-0162-3296</orcidid><orcidid>https://orcid.org/0000-0002-8407-0780</orcidid><orcidid>https://orcid.org/0000-0002-5158-9949</orcidid><orcidid>https://orcid.org/0000-0001-8922-7639</orcidid><orcidid>https://orcid.org/0000-0002-2094-5680</orcidid></search><sort><creationdate>20230601</creationdate><title>GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images</title><author>Hu, Xiaoyan ; Zhang, Ling-Xiao ; Gao, Lin ; Dai, Weiwei ; Han, Xiaoguang ; Lai, Yu-Kun ; Chen, Yiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-abdebec290c59e8ae34455a2de550b83e6b287653f74a87d5894a4f4551ab5103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>attention mechanism</topic><topic>Biomedical imaging</topic><topic>Blindness</topic><topic>Cataracts</topic><topic>Deep learning</topic><topic>Eye</topic><topic>Eye diseases</topic><topic>Feature extraction</topic><topic>fundus image</topic><topic>Fundus Oculi</topic><topic>Glaucoma</topic><topic>Glaucoma - diagnostic imaging</topic><topic>Glaucoma forecast</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Optic nerve</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Task analysis</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Ling-Xiao</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><creatorcontrib>Dai, Weiwei</creatorcontrib><creatorcontrib>Han, Xiaoguang</creatorcontrib><creatorcontrib>Lai, Yu-Kun</creatorcontrib><creatorcontrib>Chen, Yiqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xiaoyan</au><au>Zhang, Ling-Xiao</au><au>Gao, Lin</au><au>Dai, Weiwei</au><au>Han, Xiaoguang</au><au>Lai, Yu-Kun</au><au>Chen, Yiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>42</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Chronic Glaucoma is an eye disease with progressive optic nerve damage. It is the second leading cause of blindness after cataract and the first leading cause of irreversible blindness. Glaucoma forecast can predict future eye state of a patient by analyzing the historical fundus images, which is helpful for early detection and intervention of potential patients and avoiding the outcome of blindness. In this paper, we propose a GLaucoma forecast transformer based on Irregularly saMpled fundus images named GLIM-Net to predict the probability of developing glaucoma in the future. The main challenge is that the existing fundus images are often sampled at irregular times, making it difficult to accurately capture the subtle progression of glaucoma over time. We therefore introduce two novel modules, namely time positional encoding and time-sensitive MSA (multi-head self-attention) modules, to address this challenge. Unlike many existing works that focus on prediction for an unspecified future time, we also propose an extended model which is further capable of prediction conditioned on a specific future time. The experimental results on the benchmark dataset SIGF show that the accuracy of our method outperforms the state-of-the-art models. In addition, the ablation experiments also confirm the effectiveness of the two modules we propose, which can provide a good reference for the optimization of Transformer models.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022815</pmid><doi>10.1109/TMI.2023.3243692</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1021-8148</orcidid><orcidid>https://orcid.org/0000-0003-0162-3296</orcidid><orcidid>https://orcid.org/0000-0002-8407-0780</orcidid><orcidid>https://orcid.org/0000-0002-5158-9949</orcidid><orcidid>https://orcid.org/0000-0001-8922-7639</orcidid><orcidid>https://orcid.org/0000-0002-2094-5680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-06, Vol.42 (6), p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2023_3243692
source IEEE Electronic Library (IEL)
subjects Ablation
attention mechanism
Biomedical imaging
Blindness
Cataracts
Deep learning
Eye
Eye diseases
Feature extraction
fundus image
Fundus Oculi
Glaucoma
Glaucoma - diagnostic imaging
Glaucoma forecast
Humans
Image segmentation
Mathematical models
Medical imaging
Modules
Optic nerve
Optimization
Predictive models
Task analysis
transformer
Transformers
title GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLIM-Net:%20Chronic%20Glaucoma%20Forecast%20Transformer%20for%20Irregularly%20Sampled%20Sequential%20Fundus%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Hu,%20Xiaoyan&rft.date=2023-06-01&rft.volume=42&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3243692&rft_dat=%3Cproquest_RIE%3E2797149894%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821717599&rft_id=info:pmid/37022815&rft_ieee_id=10041214&rfr_iscdi=true