CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels

The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-11, Vol.40 (11), p.3065-3076
Hauptverfasser: Xia, Wenjun, Lu, Zexin, Huang, Yongqiang, Liu, Yan, Chen, Hu, Zhou, Jiliu, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3076
container_issue 11
container_start_page 3065
container_title IEEE transactions on medical imaging
container_volume 40
creator Xia, Wenjun
Lu, Zexin
Huang, Yongqiang
Liu, Yan
Chen, Hu
Zhou, Jiliu
Zhang, Yi
description The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.
doi_str_mv 10.1109/TMI.2021.3085839
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2021_3085839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9446923</ieee_id><sourcerecordid>2537632465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMoun7cBS8BL1665ruNN9l1VVhRZEVvJU2nWO02a5Iq_vdmWfHgaeDxe2-GeQgdUzKmlOjzxd3tmBFGx5wUsuB6C42olEXGpHjZRiPC8iIjRLE9tB_CGyFUSKJ30R4XpFBSiRF6nyzwI1jXh-gHG1vX4-c2vuKH6ewCPxhvlhDBZ1NYQV9DH_FsLX05_44b5_HURJMkt8R3QxfbVQf4Glzy-BYCNn2Npy4AnsMndOEQ7TSmC3D0Ow_Q0-xqMbnJ5vfXt5PLeWY5EzFTDHKVN5pqJjnnBa01qaXNKysoqxom84YBryzXTDNrdAWKV6oWORCec1HwA3S2yV159zFAiOWyDRa6zvTghlCm2FylVUom9PQf-uYG36frEpVepEmh14FkQ1nvQvDQlCvfLo3_Likp10WUqYhyXUT5W0SynGwsLQD84VoIpRnnP1BbgM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586590898</pqid></control><display><type>article</type><title>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</title><source>IEEE Electronic Library (IEL)</source><creator>Xia, Wenjun ; Lu, Zexin ; Huang, Yongqiang ; Liu, Yan ; Chen, Hu ; Zhou, Jiliu ; Zhang, Yi</creator><creatorcontrib>Xia, Wenjun ; Lu, Zexin ; Huang, Yongqiang ; Liu, Yan ; Chen, Hu ; Zhou, Jiliu ; Zhang, Yi</creatorcontrib><description>The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3085839</identifier><identifier>PMID: 34086564</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computed tomography ; Deep learning ; Feature extraction ; Feature maps ; Geometry ; Image reconstruction ; Multilayer perceptrons ; Noise measurement ; Parameters ; radiation dose ; Reconstruction ; Reconstruction algorithms ; scanning geometry ; Training</subject><ispartof>IEEE transactions on medical imaging, 2021-11, Vol.40 (11), p.3065-3076</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</citedby><cites>FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</cites><orcidid>0000-0001-9300-6572 ; 0000-0003-4881-8429 ; 0000-0001-7201-2092 ; 0000-0002-0428-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9446923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9446923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Wenjun</creatorcontrib><creatorcontrib>Lu, Zexin</creatorcontrib><creatorcontrib>Huang, Yongqiang</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Zhou, Jiliu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.</description><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Geometry</subject><subject>Image reconstruction</subject><subject>Multilayer perceptrons</subject><subject>Noise measurement</subject><subject>Parameters</subject><subject>radiation dose</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>scanning geometry</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1LxDAQxYMoun7cBS8BL1665ruNN9l1VVhRZEVvJU2nWO02a5Iq_vdmWfHgaeDxe2-GeQgdUzKmlOjzxd3tmBFGx5wUsuB6C42olEXGpHjZRiPC8iIjRLE9tB_CGyFUSKJ30R4XpFBSiRF6nyzwI1jXh-gHG1vX4-c2vuKH6ewCPxhvlhDBZ1NYQV9DH_FsLX05_44b5_HURJMkt8R3QxfbVQf4Glzy-BYCNn2Npy4AnsMndOEQ7TSmC3D0Ow_Q0-xqMbnJ5vfXt5PLeWY5EzFTDHKVN5pqJjnnBa01qaXNKysoqxom84YBryzXTDNrdAWKV6oWORCec1HwA3S2yV159zFAiOWyDRa6zvTghlCm2FylVUom9PQf-uYG36frEpVepEmh14FkQ1nvQvDQlCvfLo3_Likp10WUqYhyXUT5W0SynGwsLQD84VoIpRnnP1BbgM0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Xia, Wenjun</creator><creator>Lu, Zexin</creator><creator>Huang, Yongqiang</creator><creator>Liu, Yan</creator><creator>Chen, Hu</creator><creator>Zhou, Jiliu</creator><creator>Zhang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9300-6572</orcidid><orcidid>https://orcid.org/0000-0003-4881-8429</orcidid><orcidid>https://orcid.org/0000-0001-7201-2092</orcidid><orcidid>https://orcid.org/0000-0002-0428-1490</orcidid></search><sort><creationdate>20211101</creationdate><title>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</title><author>Xia, Wenjun ; Lu, Zexin ; Huang, Yongqiang ; Liu, Yan ; Chen, Hu ; Zhou, Jiliu ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Geometry</topic><topic>Image reconstruction</topic><topic>Multilayer perceptrons</topic><topic>Noise measurement</topic><topic>Parameters</topic><topic>radiation dose</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>scanning geometry</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wenjun</creatorcontrib><creatorcontrib>Lu, Zexin</creatorcontrib><creatorcontrib>Huang, Yongqiang</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Zhou, Jiliu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Wenjun</au><au>Lu, Zexin</au><au>Huang, Yongqiang</au><au>Liu, Yan</au><au>Chen, Hu</au><au>Zhou, Jiliu</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>40</volume><issue>11</issue><spage>3065</spage><epage>3076</epage><pages>3065-3076</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34086564</pmid><doi>10.1109/TMI.2021.3085839</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9300-6572</orcidid><orcidid>https://orcid.org/0000-0003-4881-8429</orcidid><orcidid>https://orcid.org/0000-0001-7201-2092</orcidid><orcidid>https://orcid.org/0000-0002-0428-1490</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-11, Vol.40 (11), p.3065-3076
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2021_3085839
source IEEE Electronic Library (IEL)
subjects Computed tomography
Deep learning
Feature extraction
Feature maps
Geometry
Image reconstruction
Multilayer perceptrons
Noise measurement
Parameters
radiation dose
Reconstruction
Reconstruction algorithms
scanning geometry
Training
title CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CT%20Reconstruction%20With%20PDF:%20Parameter-Dependent%20Framework%20for%20Data%20From%20Multiple%20Geometries%20and%20Dose%20Levels&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Xia,%20Wenjun&rft.date=2021-11-01&rft.volume=40&rft.issue=11&rft.spage=3065&rft.epage=3076&rft.pages=3065-3076&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3085839&rft_dat=%3Cproquest_RIE%3E2537632465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586590898&rft_id=info:pmid/34086564&rft_ieee_id=9446923&rfr_iscdi=true