CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels
The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parame...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2021-11, Vol.40 (11), p.3065-3076 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3076 |
---|---|
container_issue | 11 |
container_start_page | 3065 |
container_title | IEEE transactions on medical imaging |
container_volume | 40 |
creator | Xia, Wenjun Lu, Zexin Huang, Yongqiang Liu, Yan Chen, Hu Zhou, Jiliu Zhang, Yi |
description | The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels. |
doi_str_mv | 10.1109/TMI.2021.3085839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2021_3085839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9446923</ieee_id><sourcerecordid>2537632465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMoun7cBS8BL1665ruNN9l1VVhRZEVvJU2nWO02a5Iq_vdmWfHgaeDxe2-GeQgdUzKmlOjzxd3tmBFGx5wUsuB6C42olEXGpHjZRiPC8iIjRLE9tB_CGyFUSKJ30R4XpFBSiRF6nyzwI1jXh-gHG1vX4-c2vuKH6ewCPxhvlhDBZ1NYQV9DH_FsLX05_44b5_HURJMkt8R3QxfbVQf4Glzy-BYCNn2Npy4AnsMndOEQ7TSmC3D0Ow_Q0-xqMbnJ5vfXt5PLeWY5EzFTDHKVN5pqJjnnBa01qaXNKysoqxom84YBryzXTDNrdAWKV6oWORCec1HwA3S2yV159zFAiOWyDRa6zvTghlCm2FylVUom9PQf-uYG36frEpVepEmh14FkQ1nvQvDQlCvfLo3_Likp10WUqYhyXUT5W0SynGwsLQD84VoIpRnnP1BbgM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586590898</pqid></control><display><type>article</type><title>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</title><source>IEEE Electronic Library (IEL)</source><creator>Xia, Wenjun ; Lu, Zexin ; Huang, Yongqiang ; Liu, Yan ; Chen, Hu ; Zhou, Jiliu ; Zhang, Yi</creator><creatorcontrib>Xia, Wenjun ; Lu, Zexin ; Huang, Yongqiang ; Liu, Yan ; Chen, Hu ; Zhou, Jiliu ; Zhang, Yi</creatorcontrib><description>The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3085839</identifier><identifier>PMID: 34086564</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computed tomography ; Deep learning ; Feature extraction ; Feature maps ; Geometry ; Image reconstruction ; Multilayer perceptrons ; Noise measurement ; Parameters ; radiation dose ; Reconstruction ; Reconstruction algorithms ; scanning geometry ; Training</subject><ispartof>IEEE transactions on medical imaging, 2021-11, Vol.40 (11), p.3065-3076</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</citedby><cites>FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</cites><orcidid>0000-0001-9300-6572 ; 0000-0003-4881-8429 ; 0000-0001-7201-2092 ; 0000-0002-0428-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9446923$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9446923$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Wenjun</creatorcontrib><creatorcontrib>Lu, Zexin</creatorcontrib><creatorcontrib>Huang, Yongqiang</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Zhou, Jiliu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.</description><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Geometry</subject><subject>Image reconstruction</subject><subject>Multilayer perceptrons</subject><subject>Noise measurement</subject><subject>Parameters</subject><subject>radiation dose</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>scanning geometry</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1LxDAQxYMoun7cBS8BL1665ruNN9l1VVhRZEVvJU2nWO02a5Iq_vdmWfHgaeDxe2-GeQgdUzKmlOjzxd3tmBFGx5wUsuB6C42olEXGpHjZRiPC8iIjRLE9tB_CGyFUSKJ30R4XpFBSiRF6nyzwI1jXh-gHG1vX4-c2vuKH6ewCPxhvlhDBZ1NYQV9DH_FsLX05_44b5_HURJMkt8R3QxfbVQf4Glzy-BYCNn2Npy4AnsMndOEQ7TSmC3D0Ow_Q0-xqMbnJ5vfXt5PLeWY5EzFTDHKVN5pqJjnnBa01qaXNKysoqxom84YBryzXTDNrdAWKV6oWORCec1HwA3S2yV159zFAiOWyDRa6zvTghlCm2FylVUom9PQf-uYG36frEpVepEmh14FkQ1nvQvDQlCvfLo3_Likp10WUqYhyXUT5W0SynGwsLQD84VoIpRnnP1BbgM0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Xia, Wenjun</creator><creator>Lu, Zexin</creator><creator>Huang, Yongqiang</creator><creator>Liu, Yan</creator><creator>Chen, Hu</creator><creator>Zhou, Jiliu</creator><creator>Zhang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9300-6572</orcidid><orcidid>https://orcid.org/0000-0003-4881-8429</orcidid><orcidid>https://orcid.org/0000-0001-7201-2092</orcidid><orcidid>https://orcid.org/0000-0002-0428-1490</orcidid></search><sort><creationdate>20211101</creationdate><title>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</title><author>Xia, Wenjun ; Lu, Zexin ; Huang, Yongqiang ; Liu, Yan ; Chen, Hu ; Zhou, Jiliu ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-62e767f9192533381d90d5c7bc412bf257f2e3bc39292ca9be63b6d47e0373483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Geometry</topic><topic>Image reconstruction</topic><topic>Multilayer perceptrons</topic><topic>Noise measurement</topic><topic>Parameters</topic><topic>radiation dose</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>scanning geometry</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xia, Wenjun</creatorcontrib><creatorcontrib>Lu, Zexin</creatorcontrib><creatorcontrib>Huang, Yongqiang</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Zhou, Jiliu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Wenjun</au><au>Lu, Zexin</au><au>Huang, Yongqiang</au><au>Liu, Yan</au><au>Chen, Hu</au><au>Zhou, Jiliu</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>40</volume><issue>11</issue><spage>3065</spage><epage>3076</epage><pages>3065-3076</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34086564</pmid><doi>10.1109/TMI.2021.3085839</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9300-6572</orcidid><orcidid>https://orcid.org/0000-0003-4881-8429</orcidid><orcidid>https://orcid.org/0000-0001-7201-2092</orcidid><orcidid>https://orcid.org/0000-0002-0428-1490</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2021-11, Vol.40 (11), p.3065-3076 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2021_3085839 |
source | IEEE Electronic Library (IEL) |
subjects | Computed tomography Deep learning Feature extraction Feature maps Geometry Image reconstruction Multilayer perceptrons Noise measurement Parameters radiation dose Reconstruction Reconstruction algorithms scanning geometry Training |
title | CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CT%20Reconstruction%20With%20PDF:%20Parameter-Dependent%20Framework%20for%20Data%20From%20Multiple%20Geometries%20and%20Dose%20Levels&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Xia,%20Wenjun&rft.date=2021-11-01&rft.volume=40&rft.issue=11&rft.spage=3065&rft.epage=3076&rft.pages=3065-3076&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3085839&rft_dat=%3Cproquest_RIE%3E2537632465%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586590898&rft_id=info:pmid/34086564&rft_ieee_id=9446923&rfr_iscdi=true |