Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method

In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2021-06, Vol.40 (6), p.1579-1590
Hauptverfasser: Won, Jun Yeon, Park, Haewook, Lee, Seungeun, Son, Jeong-Whan, Chung, Yina, Ko, Guen Bae, Kim, Kyeong Yun, Song, Junghyun, Seo, Seongho, Ryu, Yeunchul, Chung, Jun-Young, Lee, Jae Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1590
container_issue 6
container_start_page 1579
container_title IEEE transactions on medical imaging
container_volume 40
creator Won, Jun Yeon
Park, Haewook
Lee, Seungeun
Son, Jeong-Whan
Chung, Yina
Ko, Guen Bae
Kim, Kyeong Yun
Song, Junghyun
Seo, Seongho
Ryu, Yeunchul
Chung, Jun-Young
Lee, Jae Sung
description In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.
doi_str_mv 10.1109/TMI.2021.3062066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2021_3062066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9363182</ieee_id><sourcerecordid>2536035865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a8a726224e0ff3c29a24f4e10f9060e4296fc5e563468c8c6d20fd611d2be6363</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqFwR0JClrhw2XT8mfWx9ItIjVqVVOK2cnfHwdWuHexdpHLmh-MooQdOPrzPvJ7RQ8h7BnPGwJysV8s5B87mAjQHrV-QGVOqrriS31-SGfBFXUGJjsibnB8BmFRgXpMjITRXpoYZ-XOOv7CP2wHDSG3o6DL40due3mGe-jHT6KilX5L1gd5erEucMY3UxUS_-aEQNmCcMl1Ua8y93TEnq7slvc8-bEohvby9Oq1uQv9U-E0oxed-U374bUcfA13h-CN2b8krZ_uM7w7vMbm_vFiffa2ub66WZ6fXVSuVGitb2wXXnEsE50TLjeXSSWTgDGhAyY12rUKlhdR1W7e64-A6zVjHH1ALLY7J533vNsWfE-axGXxuse_3RzRcGiEVM8wU9NN_6GOcUtm_UEpoEKrWqlCwp9oUc07omm3yg01PDYNmZ6gphpqdoeZgqIx8PBRPDwN2zwP_lBTgwx7wiPgcm7I-q7n4Cx3dknk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536035865</pqid></control><display><type>article</type><title>Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method</title><source>IEEE Electronic Library (IEL)</source><creator>Won, Jun Yeon ; Park, Haewook ; Lee, Seungeun ; Son, Jeong-Whan ; Chung, Yina ; Ko, Guen Bae ; Kim, Kyeong Yun ; Song, Junghyun ; Seo, Seongho ; Ryu, Yeunchul ; Chung, Jun-Young ; Lee, Jae Sung</creator><creatorcontrib>Won, Jun Yeon ; Park, Haewook ; Lee, Seungeun ; Son, Jeong-Whan ; Chung, Yina ; Ko, Guen Bae ; Kim, Kyeong Yun ; Song, Junghyun ; Seo, Seongho ; Ryu, Yeunchul ; Chung, Jun-Young ; Lee, Jae Sung</creatorcontrib><description>In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2021.3062066</identifier><identifier>PMID: 33625980</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bed movements ; Brain ; Brain PET ; Cables ; Cooling systems ; Crystals ; DAQ ; Data acquisition ; Detectors ; Digitization ; Emission analysis ; Energy resolution ; Field of view ; Field programmable gate arrays ; FPGA ; Heat pipes ; High definition ; Human motion ; Imaging ; Magnetic resonance imaging ; Medical imaging ; Multimedia ; NEMA ; Neuroimaging ; Positron emission ; Positron emission tomography ; Scanners ; simultaneous PET/MRI ; Spatial discrimination ; Spatial resolution ; Synchronism ; Synchronization ; Tomography ; Transceivers</subject><ispartof>IEEE transactions on medical imaging, 2021-06, Vol.40 (6), p.1579-1590</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a8a726224e0ff3c29a24f4e10f9060e4296fc5e563468c8c6d20fd611d2be6363</citedby><cites>FETCH-LOGICAL-c455t-a8a726224e0ff3c29a24f4e10f9060e4296fc5e563468c8c6d20fd611d2be6363</cites><orcidid>0000-0003-1155-0107 ; 0000-0001-9114-463X ; 0000-0001-5760-2545 ; 0000-0002-5734-5961 ; 0000-0002-7408-8215 ; 0000-0001-7623-053X ; 0000-0002-2532-1535 ; 0000-0002-3886-6462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9363182$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33625980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Won, Jun Yeon</creatorcontrib><creatorcontrib>Park, Haewook</creatorcontrib><creatorcontrib>Lee, Seungeun</creatorcontrib><creatorcontrib>Son, Jeong-Whan</creatorcontrib><creatorcontrib>Chung, Yina</creatorcontrib><creatorcontrib>Ko, Guen Bae</creatorcontrib><creatorcontrib>Kim, Kyeong Yun</creatorcontrib><creatorcontrib>Song, Junghyun</creatorcontrib><creatorcontrib>Seo, Seongho</creatorcontrib><creatorcontrib>Ryu, Yeunchul</creatorcontrib><creatorcontrib>Chung, Jun-Young</creatorcontrib><creatorcontrib>Lee, Jae Sung</creatorcontrib><title>Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.</description><subject>Bed movements</subject><subject>Brain</subject><subject>Brain PET</subject><subject>Cables</subject><subject>Cooling systems</subject><subject>Crystals</subject><subject>DAQ</subject><subject>Data acquisition</subject><subject>Detectors</subject><subject>Digitization</subject><subject>Emission analysis</subject><subject>Energy resolution</subject><subject>Field of view</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Heat pipes</subject><subject>High definition</subject><subject>Human motion</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Multimedia</subject><subject>NEMA</subject><subject>Neuroimaging</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Scanners</subject><subject>simultaneous PET/MRI</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Tomography</subject><subject>Transceivers</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhi0EoqFwR0JClrhw2XT8mfWx9ItIjVqVVOK2cnfHwdWuHexdpHLmh-MooQdOPrzPvJ7RQ8h7BnPGwJysV8s5B87mAjQHrV-QGVOqrriS31-SGfBFXUGJjsibnB8BmFRgXpMjITRXpoYZ-XOOv7CP2wHDSG3o6DL40due3mGe-jHT6KilX5L1gd5erEucMY3UxUS_-aEQNmCcMl1Ua8y93TEnq7slvc8-bEohvby9Oq1uQv9U-E0oxed-U374bUcfA13h-CN2b8krZ_uM7w7vMbm_vFiffa2ub66WZ6fXVSuVGitb2wXXnEsE50TLjeXSSWTgDGhAyY12rUKlhdR1W7e64-A6zVjHH1ALLY7J533vNsWfE-axGXxuse_3RzRcGiEVM8wU9NN_6GOcUtm_UEpoEKrWqlCwp9oUc07omm3yg01PDYNmZ6gphpqdoeZgqIx8PBRPDwN2zwP_lBTgwx7wiPgcm7I-q7n4Cx3dknk</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Won, Jun Yeon</creator><creator>Park, Haewook</creator><creator>Lee, Seungeun</creator><creator>Son, Jeong-Whan</creator><creator>Chung, Yina</creator><creator>Ko, Guen Bae</creator><creator>Kim, Kyeong Yun</creator><creator>Song, Junghyun</creator><creator>Seo, Seongho</creator><creator>Ryu, Yeunchul</creator><creator>Chung, Jun-Young</creator><creator>Lee, Jae Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1155-0107</orcidid><orcidid>https://orcid.org/0000-0001-9114-463X</orcidid><orcidid>https://orcid.org/0000-0001-5760-2545</orcidid><orcidid>https://orcid.org/0000-0002-5734-5961</orcidid><orcidid>https://orcid.org/0000-0002-7408-8215</orcidid><orcidid>https://orcid.org/0000-0001-7623-053X</orcidid><orcidid>https://orcid.org/0000-0002-2532-1535</orcidid><orcidid>https://orcid.org/0000-0002-3886-6462</orcidid></search><sort><creationdate>20210601</creationdate><title>Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method</title><author>Won, Jun Yeon ; Park, Haewook ; Lee, Seungeun ; Son, Jeong-Whan ; Chung, Yina ; Ko, Guen Bae ; Kim, Kyeong Yun ; Song, Junghyun ; Seo, Seongho ; Ryu, Yeunchul ; Chung, Jun-Young ; Lee, Jae Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a8a726224e0ff3c29a24f4e10f9060e4296fc5e563468c8c6d20fd611d2be6363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bed movements</topic><topic>Brain</topic><topic>Brain PET</topic><topic>Cables</topic><topic>Cooling systems</topic><topic>Crystals</topic><topic>DAQ</topic><topic>Data acquisition</topic><topic>Detectors</topic><topic>Digitization</topic><topic>Emission analysis</topic><topic>Energy resolution</topic><topic>Field of view</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Heat pipes</topic><topic>High definition</topic><topic>Human motion</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Multimedia</topic><topic>NEMA</topic><topic>Neuroimaging</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Scanners</topic><topic>simultaneous PET/MRI</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Tomography</topic><topic>Transceivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Won, Jun Yeon</creatorcontrib><creatorcontrib>Park, Haewook</creatorcontrib><creatorcontrib>Lee, Seungeun</creatorcontrib><creatorcontrib>Son, Jeong-Whan</creatorcontrib><creatorcontrib>Chung, Yina</creatorcontrib><creatorcontrib>Ko, Guen Bae</creatorcontrib><creatorcontrib>Kim, Kyeong Yun</creatorcontrib><creatorcontrib>Song, Junghyun</creatorcontrib><creatorcontrib>Seo, Seongho</creatorcontrib><creatorcontrib>Ryu, Yeunchul</creatorcontrib><creatorcontrib>Chung, Jun-Young</creatorcontrib><creatorcontrib>Lee, Jae Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Won, Jun Yeon</au><au>Park, Haewook</au><au>Lee, Seungeun</au><au>Son, Jeong-Whan</au><au>Chung, Yina</au><au>Ko, Guen Bae</au><au>Kim, Kyeong Yun</au><au>Song, Junghyun</au><au>Seo, Seongho</au><au>Ryu, Yeunchul</au><au>Chung, Jun-Young</au><au>Lee, Jae Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>40</volume><issue>6</issue><spage>1579</spage><epage>1590</epage><pages>1579-1590</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33625980</pmid><doi>10.1109/TMI.2021.3062066</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1155-0107</orcidid><orcidid>https://orcid.org/0000-0001-9114-463X</orcidid><orcidid>https://orcid.org/0000-0001-5760-2545</orcidid><orcidid>https://orcid.org/0000-0002-5734-5961</orcidid><orcidid>https://orcid.org/0000-0002-7408-8215</orcidid><orcidid>https://orcid.org/0000-0001-7623-053X</orcidid><orcidid>https://orcid.org/0000-0002-2532-1535</orcidid><orcidid>https://orcid.org/0000-0002-3886-6462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2021-06, Vol.40 (6), p.1579-1590
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2021_3062066
source IEEE Electronic Library (IEL)
subjects Bed movements
Brain
Brain PET
Cables
Cooling systems
Crystals
DAQ
Data acquisition
Detectors
Digitization
Emission analysis
Energy resolution
Field of view
Field programmable gate arrays
FPGA
Heat pipes
High definition
Human motion
Imaging
Magnetic resonance imaging
Medical imaging
Multimedia
NEMA
Neuroimaging
Positron emission
Positron emission tomography
Scanners
simultaneous PET/MRI
Spatial discrimination
Spatial resolution
Synchronism
Synchronization
Tomography
Transceivers
title Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Initial%20Results%20of%20a%20Brain%20PET%20Insert%20for%20Simultaneous%207-Tesla%20PET/MRI%20Using%20an%20FPGA-Only%20Signal%20Digitization%20Method&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Won,%20Jun%20Yeon&rft.date=2021-06-01&rft.volume=40&rft.issue=6&rft.spage=1579&rft.epage=1590&rft.pages=1579-1590&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2021.3062066&rft_dat=%3Cproquest_cross%3E2536035865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536035865&rft_id=info:pmid/33625980&rft_ieee_id=9363182&rfr_iscdi=true