In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms
Propagation-based phase-contrast X-ray imaging is an emerging technique that can improve dose efficiency in clinical imaging. In silico tools are key to understanding the fundamental imaging mechanisms and develop new applications. Here, due to the coherent nature of the phase-contrast effects, tool...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2021-02, Vol.40 (2), p.539-548 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 2 |
container_start_page | 539 |
container_title | IEEE transactions on medical imaging |
container_volume | 40 |
creator | Haggmark, Ilian Shaker, Kian Hertz, Hans M. |
description | Propagation-based phase-contrast X-ray imaging is an emerging technique that can improve dose efficiency in clinical imaging. In silico tools are key to understanding the fundamental imaging mechanisms and develop new applications. Here, due to the coherent nature of the phase-contrast effects, tools based on wave propagation (WP) are preferred over Monte Carlo (MC) based methods. WP simulations require very high wave-front sampling which typically limits simulations to small idealized objects. Virtual anthropomorphic voxel-based phantoms are typically provided with a resolution lower than imposed sampling requirements and, thus, cannot be directly translated for use in WP simulations. In the present paper we propose a general strategy to enable the use of these phantoms for WP simulations. The strategy is based on upsampling in the 3D domain followed by projection resulting in high-resolution maps of the projected thickness for each phantom material. These maps can then be efficiently used for simulations of Fresnel diffraction to generate in silico phase-contrast X-ray images. We demonstrate the strategy on an anthropomorphic breast phantom to simulate propagation-based phase-contrast mammography using a laboratory micro-focus X-ray source. |
doi_str_mv | 10.1109/TMI.2020.3031318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2020_3031318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9224984</ieee_id><sourcerecordid>2451856067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-9231e91a67fd345f6bd645c6e2f8b0f0ab88a751a264a5be7d7c97f08cd8dae3</originalsourceid><addsrcrecordid>eNpdkUuP0zAURi0EYjoDeyQkFIkNG5frZ-xlKa9Kw0NQjWZnOYnTekjiYCca5t_jqqULVndxz_fpXh2EXhBYEgL67fbLZkmBwpIBI4yoR2hBhFCYCn77GC2AlgoDSHqBLlO6AyBcgH6KLhgDIYDyBfq6GYqfvvN1KL7vbXJ4HYYp2jQVt_iHfSg2vd35YVeEtlgN0z6GMfQhjntfFzfhj-vwuxxqDtlhCn16hp60tkvu-Wleoe3HD9v1Z3z97dNmvbrGNddswpoy4jSxsmwbxkUrq0ZyUUtHW1VBC7ZSypaCWCq5FZUrm7LWZQuqblRjHbtC-Fib7t04V2aMvrfxwQTrzXt_szIh7syvaW-o0kLRzL858mMMv2eXJtP7VLuus4MLczKUC6KEBFlm9PV_6F2Y45CfyZSSQlOteabgSNUxpBRdez6BgDmoMVmNOagxJzU58upUPFe9a86Bfy4y8PIIeOfcea0p5Vpx9hdvSJE6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486592994</pqid></control><display><type>article</type><title>In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms</title><source>SWEPUB Freely available online</source><source>IEEE Electronic Library (IEL)</source><creator>Haggmark, Ilian ; Shaker, Kian ; Hertz, Hans M.</creator><creatorcontrib>Haggmark, Ilian ; Shaker, Kian ; Hertz, Hans M.</creatorcontrib><description>Propagation-based phase-contrast X-ray imaging is an emerging technique that can improve dose efficiency in clinical imaging. In silico tools are key to understanding the fundamental imaging mechanisms and develop new applications. Here, due to the coherent nature of the phase-contrast effects, tools based on wave propagation (WP) are preferred over Monte Carlo (MC) based methods. WP simulations require very high wave-front sampling which typically limits simulations to small idealized objects. Virtual anthropomorphic voxel-based phantoms are typically provided with a resolution lower than imposed sampling requirements and, thus, cannot be directly translated for use in WP simulations. In the present paper we propose a general strategy to enable the use of these phantoms for WP simulations. The strategy is based on upsampling in the 3D domain followed by projection resulting in high-resolution maps of the projected thickness for each phantom material. These maps can then be efficiently used for simulations of Fresnel diffraction to generate in silico phase-contrast X-ray images. We demonstrate the strategy on an anthropomorphic breast phantom to simulate propagation-based phase-contrast mammography using a laboratory micro-focus X-ray source.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3031318</identifier><identifier>PMID: 33055024</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anthropomorphism ; Breast ; Fresnel diffraction ; Image contrast ; In silico imaging ; Mammography ; Monte Carlo simulation ; Numerical models ; Phantoms ; phase contrast ; Photonics ; Propagation ; radiography ; Sampling ; Simulation ; Strategy ; Task analysis ; Wave fronts ; Wave propagation ; X ray imagery ; X ray sources ; x-ray ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.539-548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-9231e91a67fd345f6bd645c6e2f8b0f0ab88a751a264a5be7d7c97f08cd8dae3</citedby><cites>FETCH-LOGICAL-c493t-9231e91a67fd345f6bd645c6e2f8b0f0ab88a751a264a5be7d7c97f08cd8dae3</cites><orcidid>0000-0002-8853-1441 ; 0000-0002-7674-6437 ; 0000-0003-2723-6622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9224984$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,796,885,27922,27923,54756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33055024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289582$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Haggmark, Ilian</creatorcontrib><creatorcontrib>Shaker, Kian</creatorcontrib><creatorcontrib>Hertz, Hans M.</creatorcontrib><title>In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Propagation-based phase-contrast X-ray imaging is an emerging technique that can improve dose efficiency in clinical imaging. In silico tools are key to understanding the fundamental imaging mechanisms and develop new applications. Here, due to the coherent nature of the phase-contrast effects, tools based on wave propagation (WP) are preferred over Monte Carlo (MC) based methods. WP simulations require very high wave-front sampling which typically limits simulations to small idealized objects. Virtual anthropomorphic voxel-based phantoms are typically provided with a resolution lower than imposed sampling requirements and, thus, cannot be directly translated for use in WP simulations. In the present paper we propose a general strategy to enable the use of these phantoms for WP simulations. The strategy is based on upsampling in the 3D domain followed by projection resulting in high-resolution maps of the projected thickness for each phantom material. These maps can then be efficiently used for simulations of Fresnel diffraction to generate in silico phase-contrast X-ray images. We demonstrate the strategy on an anthropomorphic breast phantom to simulate propagation-based phase-contrast mammography using a laboratory micro-focus X-ray source.</description><subject>Anthropomorphism</subject><subject>Breast</subject><subject>Fresnel diffraction</subject><subject>Image contrast</subject><subject>In silico imaging</subject><subject>Mammography</subject><subject>Monte Carlo simulation</subject><subject>Numerical models</subject><subject>Phantoms</subject><subject>phase contrast</subject><subject>Photonics</subject><subject>Propagation</subject><subject>radiography</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Strategy</subject><subject>Task analysis</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><subject>X ray imagery</subject><subject>X ray sources</subject><subject>x-ray</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpdkUuP0zAURi0EYjoDeyQkFIkNG5frZ-xlKa9Kw0NQjWZnOYnTekjiYCca5t_jqqULVndxz_fpXh2EXhBYEgL67fbLZkmBwpIBI4yoR2hBhFCYCn77GC2AlgoDSHqBLlO6AyBcgH6KLhgDIYDyBfq6GYqfvvN1KL7vbXJ4HYYp2jQVt_iHfSg2vd35YVeEtlgN0z6GMfQhjntfFzfhj-vwuxxqDtlhCn16hp60tkvu-Wleoe3HD9v1Z3z97dNmvbrGNddswpoy4jSxsmwbxkUrq0ZyUUtHW1VBC7ZSypaCWCq5FZUrm7LWZQuqblRjHbtC-Fib7t04V2aMvrfxwQTrzXt_szIh7syvaW-o0kLRzL858mMMv2eXJtP7VLuus4MLczKUC6KEBFlm9PV_6F2Y45CfyZSSQlOteabgSNUxpBRdez6BgDmoMVmNOagxJzU58upUPFe9a86Bfy4y8PIIeOfcea0p5Vpx9hdvSJE6</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Haggmark, Ilian</creator><creator>Shaker, Kian</creator><creator>Hertz, Hans M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-8853-1441</orcidid><orcidid>https://orcid.org/0000-0002-7674-6437</orcidid><orcidid>https://orcid.org/0000-0003-2723-6622</orcidid></search><sort><creationdate>20210201</creationdate><title>In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms</title><author>Haggmark, Ilian ; Shaker, Kian ; Hertz, Hans M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-9231e91a67fd345f6bd645c6e2f8b0f0ab88a751a264a5be7d7c97f08cd8dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anthropomorphism</topic><topic>Breast</topic><topic>Fresnel diffraction</topic><topic>Image contrast</topic><topic>In silico imaging</topic><topic>Mammography</topic><topic>Monte Carlo simulation</topic><topic>Numerical models</topic><topic>Phantoms</topic><topic>phase contrast</topic><topic>Photonics</topic><topic>Propagation</topic><topic>radiography</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Strategy</topic><topic>Task analysis</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><topic>X ray imagery</topic><topic>X ray sources</topic><topic>x-ray</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Haggmark, Ilian</creatorcontrib><creatorcontrib>Shaker, Kian</creatorcontrib><creatorcontrib>Hertz, Hans M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haggmark, Ilian</au><au>Shaker, Kian</au><au>Hertz, Hans M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>539</spage><epage>548</epage><pages>539-548</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Propagation-based phase-contrast X-ray imaging is an emerging technique that can improve dose efficiency in clinical imaging. In silico tools are key to understanding the fundamental imaging mechanisms and develop new applications. Here, due to the coherent nature of the phase-contrast effects, tools based on wave propagation (WP) are preferred over Monte Carlo (MC) based methods. WP simulations require very high wave-front sampling which typically limits simulations to small idealized objects. Virtual anthropomorphic voxel-based phantoms are typically provided with a resolution lower than imposed sampling requirements and, thus, cannot be directly translated for use in WP simulations. In the present paper we propose a general strategy to enable the use of these phantoms for WP simulations. The strategy is based on upsampling in the 3D domain followed by projection resulting in high-resolution maps of the projected thickness for each phantom material. These maps can then be efficiently used for simulations of Fresnel diffraction to generate in silico phase-contrast X-ray images. We demonstrate the strategy on an anthropomorphic breast phantom to simulate propagation-based phase-contrast mammography using a laboratory micro-focus X-ray source.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33055024</pmid><doi>10.1109/TMI.2020.3031318</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8853-1441</orcidid><orcidid>https://orcid.org/0000-0002-7674-6437</orcidid><orcidid>https://orcid.org/0000-0003-2723-6622</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.539-548 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2020_3031318 |
source | SWEPUB Freely available online; IEEE Electronic Library (IEL) |
subjects | Anthropomorphism Breast Fresnel diffraction Image contrast In silico imaging Mammography Monte Carlo simulation Numerical models Phantoms phase contrast Photonics Propagation radiography Sampling Simulation Strategy Task analysis Wave fronts Wave propagation X ray imagery X ray sources x-ray X-ray imaging |
title | In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Phase-Contrast%20X-Ray%20Imaging%20of%20Anthropomorphic%20Voxel-Based%20Phantoms&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Haggmark,%20Ilian&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=539&rft.epage=548&rft.pages=539-548&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3031318&rft_dat=%3Cproquest_cross%3E2451856067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486592994&rft_id=info:pmid/33055024&rft_ieee_id=9224984&rfr_iscdi=true |