Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography

We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1535-1544
Hauptverfasser: Wang, Tianshi, Pfeiffer, Tom, Daemen, Joost, Mastik, Frits, Wieser, Wolfgang, van der Steen, A. F. W., Huber, Robert, van Soest, Gijs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1544
container_issue 5
container_start_page 1535
container_title IEEE transactions on medical imaging
container_volume 39
creator Wang, Tianshi
Pfeiffer, Tom
Daemen, Joost
Mastik, Frits
Wieser, Wolfgang
van der Steen, A. F. W.
Huber, Robert
van Soest, Gijs
description We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.
doi_str_mv 10.1109/TMI.2019.2948258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2019_2948258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8896911</ieee_id><sourcerecordid>2397909822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</originalsourceid><addsrcrecordid>eNpdkc-L1DAYhoMo7uzqXRAk4GUvHfOzSY4y7urADntwBG8lTb92uqRNTVpl_OvNOuMePH2E73lfkjwIvaFkTSkxH_a77ZoRatbMCM2kfoZWVEpdMCm-P0crwpQuCCnZBbpM6YEQKiQxL9EFp4pJrsgKpa_9sPjZjhCWhHchTofgQ9c767EdG3zrwy-8HWzXjx2-GW3tocH1Ee-gsweI82-8Hedof9rkFm8j_hSmyUPE99P8t2MTMgWjA7wPQ-iinQ7HV-hFa32C1-d5hb7d3uw3X4q7-8_bzce7wnFt5qKtS6VLVYKBWhknQZWMNIKDNXUrpGkYpSUw2fBWa6EblU_C1Y5SwWvLDb9C16feKYYfC6S5GvrkwPvTayvGaf4OoanM6Pv_0IewxDHfLlNGGWI0Y5kiJ8rFkFKEtppiP9h4rCipHoVUWUj1KKQ6C8mRd-fipR6geQr8M5CBtyegB4CntdamNJTyP6xRj9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397909822</pqid></control><display><type>article</type><title>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Tianshi ; Pfeiffer, Tom ; Daemen, Joost ; Mastik, Frits ; Wieser, Wolfgang ; van der Steen, A. F. W. ; Huber, Robert ; van Soest, Gijs</creator><creatorcontrib>Wang, Tianshi ; Pfeiffer, Tom ; Daemen, Joost ; Mastik, Frits ; Wieser, Wolfgang ; van der Steen, A. F. W. ; Huber, Robert ; van Soest, Gijs</creatorcontrib><description>We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2948258</identifier><identifier>PMID: 31725370</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Arteries ; Catheters ; Coronary artery ; Coronary vessels ; Datasets ; Diameters ; Doppler effect ; Endoscopy ; Flow velocity ; heart ; Image acquisition ; Image reconstruction ; Imaging ; Livestock ; Measurement by laser beam ; Medical instruments ; Morphology ; Optical buffering ; Optical Coherence Tomography ; optical imaging/OCT/DOT ; Phase measurement ; Phase shift ; Swine ; Three dimensional flow ; Tomography ; Velocity distribution ; vessels ; Workflow</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1535-1544</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</citedby><cites>FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</cites><orcidid>0000-0001-5578-7785 ; 0000-0002-8045-7363 ; 0000-0001-9160-4077 ; 0000-0001-6474-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8896911$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31725370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tianshi</creatorcontrib><creatorcontrib>Pfeiffer, Tom</creatorcontrib><creatorcontrib>Daemen, Joost</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Wieser, Wolfgang</creatorcontrib><creatorcontrib>van der Steen, A. F. W.</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>van Soest, Gijs</creatorcontrib><title>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.</description><subject>Arteries</subject><subject>Catheters</subject><subject>Coronary artery</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Diameters</subject><subject>Doppler effect</subject><subject>Endoscopy</subject><subject>Flow velocity</subject><subject>heart</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Livestock</subject><subject>Measurement by laser beam</subject><subject>Medical instruments</subject><subject>Morphology</subject><subject>Optical buffering</subject><subject>Optical Coherence Tomography</subject><subject>optical imaging/OCT/DOT</subject><subject>Phase measurement</subject><subject>Phase shift</subject><subject>Swine</subject><subject>Three dimensional flow</subject><subject>Tomography</subject><subject>Velocity distribution</subject><subject>vessels</subject><subject>Workflow</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkc-L1DAYhoMo7uzqXRAk4GUvHfOzSY4y7urADntwBG8lTb92uqRNTVpl_OvNOuMePH2E73lfkjwIvaFkTSkxH_a77ZoRatbMCM2kfoZWVEpdMCm-P0crwpQuCCnZBbpM6YEQKiQxL9EFp4pJrsgKpa_9sPjZjhCWhHchTofgQ9c767EdG3zrwy-8HWzXjx2-GW3tocH1Ee-gsweI82-8Hedof9rkFm8j_hSmyUPE99P8t2MTMgWjA7wPQ-iinQ7HV-hFa32C1-d5hb7d3uw3X4q7-8_bzce7wnFt5qKtS6VLVYKBWhknQZWMNIKDNXUrpGkYpSUw2fBWa6EblU_C1Y5SwWvLDb9C16feKYYfC6S5GvrkwPvTayvGaf4OoanM6Pv_0IewxDHfLlNGGWI0Y5kiJ8rFkFKEtppiP9h4rCipHoVUWUj1KKQ6C8mRd-fipR6geQr8M5CBtyegB4CntdamNJTyP6xRj9c</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Tianshi</creator><creator>Pfeiffer, Tom</creator><creator>Daemen, Joost</creator><creator>Mastik, Frits</creator><creator>Wieser, Wolfgang</creator><creator>van der Steen, A. F. W.</creator><creator>Huber, Robert</creator><creator>van Soest, Gijs</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5578-7785</orcidid><orcidid>https://orcid.org/0000-0002-8045-7363</orcidid><orcidid>https://orcid.org/0000-0001-9160-4077</orcidid><orcidid>https://orcid.org/0000-0001-6474-3100</orcidid></search><sort><creationdate>20200501</creationdate><title>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</title><author>Wang, Tianshi ; Pfeiffer, Tom ; Daemen, Joost ; Mastik, Frits ; Wieser, Wolfgang ; van der Steen, A. F. W. ; Huber, Robert ; van Soest, Gijs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arteries</topic><topic>Catheters</topic><topic>Coronary artery</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Diameters</topic><topic>Doppler effect</topic><topic>Endoscopy</topic><topic>Flow velocity</topic><topic>heart</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Livestock</topic><topic>Measurement by laser beam</topic><topic>Medical instruments</topic><topic>Morphology</topic><topic>Optical buffering</topic><topic>Optical Coherence Tomography</topic><topic>optical imaging/OCT/DOT</topic><topic>Phase measurement</topic><topic>Phase shift</topic><topic>Swine</topic><topic>Three dimensional flow</topic><topic>Tomography</topic><topic>Velocity distribution</topic><topic>vessels</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianshi</creatorcontrib><creatorcontrib>Pfeiffer, Tom</creatorcontrib><creatorcontrib>Daemen, Joost</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Wieser, Wolfgang</creatorcontrib><creatorcontrib>van der Steen, A. F. W.</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>van Soest, Gijs</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianshi</au><au>Pfeiffer, Tom</au><au>Daemen, Joost</au><au>Mastik, Frits</au><au>Wieser, Wolfgang</au><au>van der Steen, A. F. W.</au><au>Huber, Robert</au><au>van Soest, Gijs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1535</spage><epage>1544</epage><pages>1535-1544</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31725370</pmid><doi>10.1109/TMI.2019.2948258</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5578-7785</orcidid><orcidid>https://orcid.org/0000-0002-8045-7363</orcidid><orcidid>https://orcid.org/0000-0001-9160-4077</orcidid><orcidid>https://orcid.org/0000-0001-6474-3100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1535-1544
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2019_2948258
source IEEE Electronic Library (IEL)
subjects Arteries
Catheters
Coronary artery
Coronary vessels
Datasets
Diameters
Doppler effect
Endoscopy
Flow velocity
heart
Image acquisition
Image reconstruction
Imaging
Livestock
Measurement by laser beam
Medical instruments
Morphology
Optical buffering
Optical Coherence Tomography
optical imaging/OCT/DOT
Phase measurement
Phase shift
Swine
Three dimensional flow
Tomography
Velocity distribution
vessels
Workflow
title Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Morphological%20and%20Flow%20Imaging%20Enabled%20by%20Megahertz%20Intravascular%20Doppler%20Optical%20Coherence%20Tomography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Wang,%20Tianshi&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1535&rft.epage=1544&rft.pages=1535-1544&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2948258&rft_dat=%3Cproquest_cross%3E2397909822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397909822&rft_id=info:pmid/31725370&rft_ieee_id=8896911&rfr_iscdi=true