Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography
We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Do...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1535-1544 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1544 |
---|---|
container_issue | 5 |
container_start_page | 1535 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Wang, Tianshi Pfeiffer, Tom Daemen, Joost Mastik, Frits Wieser, Wolfgang van der Steen, A. F. W. Huber, Robert van Soest, Gijs |
description | We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset. |
doi_str_mv | 10.1109/TMI.2019.2948258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2019_2948258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8896911</ieee_id><sourcerecordid>2397909822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</originalsourceid><addsrcrecordid>eNpdkc-L1DAYhoMo7uzqXRAk4GUvHfOzSY4y7urADntwBG8lTb92uqRNTVpl_OvNOuMePH2E73lfkjwIvaFkTSkxH_a77ZoRatbMCM2kfoZWVEpdMCm-P0crwpQuCCnZBbpM6YEQKiQxL9EFp4pJrsgKpa_9sPjZjhCWhHchTofgQ9c767EdG3zrwy-8HWzXjx2-GW3tocH1Ee-gsweI82-8Hedof9rkFm8j_hSmyUPE99P8t2MTMgWjA7wPQ-iinQ7HV-hFa32C1-d5hb7d3uw3X4q7-8_bzce7wnFt5qKtS6VLVYKBWhknQZWMNIKDNXUrpGkYpSUw2fBWa6EblU_C1Y5SwWvLDb9C16feKYYfC6S5GvrkwPvTayvGaf4OoanM6Pv_0IewxDHfLlNGGWI0Y5kiJ8rFkFKEtppiP9h4rCipHoVUWUj1KKQ6C8mRd-fipR6geQr8M5CBtyegB4CntdamNJTyP6xRj9c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397909822</pqid></control><display><type>article</type><title>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Tianshi ; Pfeiffer, Tom ; Daemen, Joost ; Mastik, Frits ; Wieser, Wolfgang ; van der Steen, A. F. W. ; Huber, Robert ; van Soest, Gijs</creator><creatorcontrib>Wang, Tianshi ; Pfeiffer, Tom ; Daemen, Joost ; Mastik, Frits ; Wieser, Wolfgang ; van der Steen, A. F. W. ; Huber, Robert ; van Soest, Gijs</creatorcontrib><description>We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2948258</identifier><identifier>PMID: 31725370</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Arteries ; Catheters ; Coronary artery ; Coronary vessels ; Datasets ; Diameters ; Doppler effect ; Endoscopy ; Flow velocity ; heart ; Image acquisition ; Image reconstruction ; Imaging ; Livestock ; Measurement by laser beam ; Medical instruments ; Morphology ; Optical buffering ; Optical Coherence Tomography ; optical imaging/OCT/DOT ; Phase measurement ; Phase shift ; Swine ; Three dimensional flow ; Tomography ; Velocity distribution ; vessels ; Workflow</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1535-1544</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</citedby><cites>FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</cites><orcidid>0000-0001-5578-7785 ; 0000-0002-8045-7363 ; 0000-0001-9160-4077 ; 0000-0001-6474-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8896911$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31725370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tianshi</creatorcontrib><creatorcontrib>Pfeiffer, Tom</creatorcontrib><creatorcontrib>Daemen, Joost</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Wieser, Wolfgang</creatorcontrib><creatorcontrib>van der Steen, A. F. W.</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>van Soest, Gijs</creatorcontrib><title>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.</description><subject>Arteries</subject><subject>Catheters</subject><subject>Coronary artery</subject><subject>Coronary vessels</subject><subject>Datasets</subject><subject>Diameters</subject><subject>Doppler effect</subject><subject>Endoscopy</subject><subject>Flow velocity</subject><subject>heart</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Livestock</subject><subject>Measurement by laser beam</subject><subject>Medical instruments</subject><subject>Morphology</subject><subject>Optical buffering</subject><subject>Optical Coherence Tomography</subject><subject>optical imaging/OCT/DOT</subject><subject>Phase measurement</subject><subject>Phase shift</subject><subject>Swine</subject><subject>Three dimensional flow</subject><subject>Tomography</subject><subject>Velocity distribution</subject><subject>vessels</subject><subject>Workflow</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkc-L1DAYhoMo7uzqXRAk4GUvHfOzSY4y7urADntwBG8lTb92uqRNTVpl_OvNOuMePH2E73lfkjwIvaFkTSkxH_a77ZoRatbMCM2kfoZWVEpdMCm-P0crwpQuCCnZBbpM6YEQKiQxL9EFp4pJrsgKpa_9sPjZjhCWhHchTofgQ9c767EdG3zrwy-8HWzXjx2-GW3tocH1Ee-gsweI82-8Hedof9rkFm8j_hSmyUPE99P8t2MTMgWjA7wPQ-iinQ7HV-hFa32C1-d5hb7d3uw3X4q7-8_bzce7wnFt5qKtS6VLVYKBWhknQZWMNIKDNXUrpGkYpSUw2fBWa6EblU_C1Y5SwWvLDb9C16feKYYfC6S5GvrkwPvTayvGaf4OoanM6Pv_0IewxDHfLlNGGWI0Y5kiJ8rFkFKEtppiP9h4rCipHoVUWUj1KKQ6C8mRd-fipR6geQr8M5CBtyegB4CntdamNJTyP6xRj9c</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Tianshi</creator><creator>Pfeiffer, Tom</creator><creator>Daemen, Joost</creator><creator>Mastik, Frits</creator><creator>Wieser, Wolfgang</creator><creator>van der Steen, A. F. W.</creator><creator>Huber, Robert</creator><creator>van Soest, Gijs</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5578-7785</orcidid><orcidid>https://orcid.org/0000-0002-8045-7363</orcidid><orcidid>https://orcid.org/0000-0001-9160-4077</orcidid><orcidid>https://orcid.org/0000-0001-6474-3100</orcidid></search><sort><creationdate>20200501</creationdate><title>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</title><author>Wang, Tianshi ; Pfeiffer, Tom ; Daemen, Joost ; Mastik, Frits ; Wieser, Wolfgang ; van der Steen, A. F. W. ; Huber, Robert ; van Soest, Gijs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-fb678676e9eb79c5e7620d43ea9bf459d2116e25d3f8848d716e4cbc1143ba393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arteries</topic><topic>Catheters</topic><topic>Coronary artery</topic><topic>Coronary vessels</topic><topic>Datasets</topic><topic>Diameters</topic><topic>Doppler effect</topic><topic>Endoscopy</topic><topic>Flow velocity</topic><topic>heart</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Livestock</topic><topic>Measurement by laser beam</topic><topic>Medical instruments</topic><topic>Morphology</topic><topic>Optical buffering</topic><topic>Optical Coherence Tomography</topic><topic>optical imaging/OCT/DOT</topic><topic>Phase measurement</topic><topic>Phase shift</topic><topic>Swine</topic><topic>Three dimensional flow</topic><topic>Tomography</topic><topic>Velocity distribution</topic><topic>vessels</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianshi</creatorcontrib><creatorcontrib>Pfeiffer, Tom</creatorcontrib><creatorcontrib>Daemen, Joost</creatorcontrib><creatorcontrib>Mastik, Frits</creatorcontrib><creatorcontrib>Wieser, Wolfgang</creatorcontrib><creatorcontrib>van der Steen, A. F. W.</creatorcontrib><creatorcontrib>Huber, Robert</creatorcontrib><creatorcontrib>van Soest, Gijs</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianshi</au><au>Pfeiffer, Tom</au><au>Daemen, Joost</au><au>Mastik, Frits</au><au>Wieser, Wolfgang</au><au>van der Steen, A. F. W.</au><au>Huber, Robert</au><au>van Soest, Gijs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1535</spage><epage>1544</epage><pages>1535-1544</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31725370</pmid><doi>10.1109/TMI.2019.2948258</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5578-7785</orcidid><orcidid>https://orcid.org/0000-0002-8045-7363</orcidid><orcidid>https://orcid.org/0000-0001-9160-4077</orcidid><orcidid>https://orcid.org/0000-0001-6474-3100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1535-1544 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2019_2948258 |
source | IEEE Electronic Library (IEL) |
subjects | Arteries Catheters Coronary artery Coronary vessels Datasets Diameters Doppler effect Endoscopy Flow velocity heart Image acquisition Image reconstruction Imaging Livestock Measurement by laser beam Medical instruments Morphology Optical buffering Optical Coherence Tomography optical imaging/OCT/DOT Phase measurement Phase shift Swine Three dimensional flow Tomography Velocity distribution vessels Workflow |
title | Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Morphological%20and%20Flow%20Imaging%20Enabled%20by%20Megahertz%20Intravascular%20Doppler%20Optical%20Coherence%20Tomography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Wang,%20Tianshi&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1535&rft.epage=1544&rft.pages=1535-1544&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2948258&rft_dat=%3Cproquest_cross%3E2397909822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397909822&rft_id=info:pmid/31725370&rft_ieee_id=8896911&rfr_iscdi=true |