Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss

Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-08, Vol.38 (8), p.1821-1832
Hauptverfasser: Taheri Dezaki, Fatemeh, Liao, Zhibin, Luong, Christina, Girgis, Hany, Dhungel, Neeraj, Abdi, Amir H., Behnami, Delaram, Gin, Ken, Rohling, Robert, Abolmaesumi, Purang, Tsang, Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1832
container_issue 8
container_start_page 1821
container_title IEEE transactions on medical imaging
container_volume 38
creator Taheri Dezaki, Fatemeh
Liao, Zhibin
Luong, Christina
Girgis, Hany
Dhungel, Neeraj
Abdi, Amir H.
Behnami, Delaram
Gin, Ken
Rohling, Robert
Abolmaesumi, Purang
Tsang, Teresa
description Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.
doi_str_mv 10.1109/TMI.2018.2888807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2018_2888807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8586941</ieee_id><sourcerecordid>2268430268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</originalsourceid><addsrcrecordid>eNpdkd9v1DAMxyPExG4b70hIKBIvvPRw0qZNHtFxHJOOH5qG4C1KUpfraJstScX235PT3faAH2zJ_tiy_SXkFYMlY6DeX3-5XHJgcsllNmiekQUTQhZcVL-ekwXwRhYANT8lZzHeALBKgHpBTksQkouSL4hfmdD2xtHvOxORfsSELvV-ov1E127n3b7sfwczRvqzT7tMTBGHB7oxCVt6hW4OAadEv-IczJBD-uvDn0jN1NLN4G3Ore9TwNHQrY_xgpx0Zoj48hjPyY9P6-vV52L7bXO5-rAtXClVKhrFZdNa1vAGOhBWgahK5zhaW4FlnWMGa8tM20rBGZZl4zqnuFJWKFVLW56Td4e5t8HfzRiTHvvocBjMhH6OmrM6f0NBU2f07X_ojZ_DlLfTnNeyKiH7TMGBciGfEbDTt6EfTXjQDPReDJ3F0Hsx9FGM3PLmOHi2I7ZPDY_fz8DrA9Aj4lNZClmripX_AHTijUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268430268</pqid></control><display><type>article</type><title>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</title><source>MEDLINE</source><source>IEEE</source><creator>Taheri Dezaki, Fatemeh ; Liao, Zhibin ; Luong, Christina ; Girgis, Hany ; Dhungel, Neeraj ; Abdi, Amir H. ; Behnami, Delaram ; Gin, Ken ; Rohling, Robert ; Abolmaesumi, Purang ; Tsang, Teresa</creator><creatorcontrib>Taheri Dezaki, Fatemeh ; Liao, Zhibin ; Luong, Christina ; Girgis, Hany ; Dhungel, Neeraj ; Abdi, Amir H. ; Behnami, Delaram ; Gin, Ken ; Rohling, Robert ; Abolmaesumi, Purang ; Tsang, Teresa</creatorcontrib><description>Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2888807</identifier><identifier>PMID: 30582532</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; bi-directional RNN ; cardiac cycle phase detection ; Convolution ; Deep Learning ; Deep residual neural networks ; densely-connected networks ; Echocardiography ; Echocardiography - methods ; Electrocardiography ; Feature extraction ; Frames ; gated recurrent unit ; Heart - diagnostic imaging ; Heart - physiology ; Heart rate ; Humans ; Image Processing, Computer-Assisted - methods ; Logic gates ; Long short-term memory ; Machine learning ; Magnetic resonance imaging ; Myocardial Contraction - physiology ; Neural networks ; Phase detection ; Recurrent neural networks</subject><ispartof>IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1821-1832</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</citedby><cites>FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</cites><orcidid>0000-0002-3169-4477 ; 0000-0001-6331-7003 ; 0000-0002-7259-8609 ; 0000-0001-9965-4511 ; 0000-0002-5985-7880 ; 0000-0003-4029-769X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8586941$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30582532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taheri Dezaki, Fatemeh</creatorcontrib><creatorcontrib>Liao, Zhibin</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Girgis, Hany</creatorcontrib><creatorcontrib>Dhungel, Neeraj</creatorcontrib><creatorcontrib>Abdi, Amir H.</creatorcontrib><creatorcontrib>Behnami, Delaram</creatorcontrib><creatorcontrib>Gin, Ken</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><title>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>bi-directional RNN</subject><subject>cardiac cycle phase detection</subject><subject>Convolution</subject><subject>Deep Learning</subject><subject>Deep residual neural networks</subject><subject>densely-connected networks</subject><subject>Echocardiography</subject><subject>Echocardiography - methods</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Frames</subject><subject>gated recurrent unit</subject><subject>Heart - diagnostic imaging</subject><subject>Heart - physiology</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Logic gates</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Myocardial Contraction - physiology</subject><subject>Neural networks</subject><subject>Phase detection</subject><subject>Recurrent neural networks</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkd9v1DAMxyPExG4b70hIKBIvvPRw0qZNHtFxHJOOH5qG4C1KUpfraJstScX235PT3faAH2zJ_tiy_SXkFYMlY6DeX3-5XHJgcsllNmiekQUTQhZcVL-ekwXwRhYANT8lZzHeALBKgHpBTksQkouSL4hfmdD2xtHvOxORfsSELvV-ov1E127n3b7sfwczRvqzT7tMTBGHB7oxCVt6hW4OAadEv-IczJBD-uvDn0jN1NLN4G3Ore9TwNHQrY_xgpx0Zoj48hjPyY9P6-vV52L7bXO5-rAtXClVKhrFZdNa1vAGOhBWgahK5zhaW4FlnWMGa8tM20rBGZZl4zqnuFJWKFVLW56Td4e5t8HfzRiTHvvocBjMhH6OmrM6f0NBU2f07X_ojZ_DlLfTnNeyKiH7TMGBciGfEbDTt6EfTXjQDPReDJ3F0Hsx9FGM3PLmOHi2I7ZPDY_fz8DrA9Aj4lNZClmripX_AHTijUI</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Taheri Dezaki, Fatemeh</creator><creator>Liao, Zhibin</creator><creator>Luong, Christina</creator><creator>Girgis, Hany</creator><creator>Dhungel, Neeraj</creator><creator>Abdi, Amir H.</creator><creator>Behnami, Delaram</creator><creator>Gin, Ken</creator><creator>Rohling, Robert</creator><creator>Abolmaesumi, Purang</creator><creator>Tsang, Teresa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3169-4477</orcidid><orcidid>https://orcid.org/0000-0001-6331-7003</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid><orcidid>https://orcid.org/0000-0001-9965-4511</orcidid><orcidid>https://orcid.org/0000-0002-5985-7880</orcidid><orcidid>https://orcid.org/0000-0003-4029-769X</orcidid></search><sort><creationdate>20190801</creationdate><title>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</title><author>Taheri Dezaki, Fatemeh ; Liao, Zhibin ; Luong, Christina ; Girgis, Hany ; Dhungel, Neeraj ; Abdi, Amir H. ; Behnami, Delaram ; Gin, Ken ; Rohling, Robert ; Abolmaesumi, Purang ; Tsang, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>bi-directional RNN</topic><topic>cardiac cycle phase detection</topic><topic>Convolution</topic><topic>Deep Learning</topic><topic>Deep residual neural networks</topic><topic>densely-connected networks</topic><topic>Echocardiography</topic><topic>Echocardiography - methods</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Frames</topic><topic>gated recurrent unit</topic><topic>Heart - diagnostic imaging</topic><topic>Heart - physiology</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Logic gates</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Myocardial Contraction - physiology</topic><topic>Neural networks</topic><topic>Phase detection</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Taheri Dezaki, Fatemeh</creatorcontrib><creatorcontrib>Liao, Zhibin</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Girgis, Hany</creatorcontrib><creatorcontrib>Dhungel, Neeraj</creatorcontrib><creatorcontrib>Abdi, Amir H.</creatorcontrib><creatorcontrib>Behnami, Delaram</creatorcontrib><creatorcontrib>Gin, Ken</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taheri Dezaki, Fatemeh</au><au>Liao, Zhibin</au><au>Luong, Christina</au><au>Girgis, Hany</au><au>Dhungel, Neeraj</au><au>Abdi, Amir H.</au><au>Behnami, Delaram</au><au>Gin, Ken</au><au>Rohling, Robert</au><au>Abolmaesumi, Purang</au><au>Tsang, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>38</volume><issue>8</issue><spage>1821</spage><epage>1832</epage><pages>1821-1832</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30582532</pmid><doi>10.1109/TMI.2018.2888807</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3169-4477</orcidid><orcidid>https://orcid.org/0000-0001-6331-7003</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid><orcidid>https://orcid.org/0000-0001-9965-4511</orcidid><orcidid>https://orcid.org/0000-0002-5985-7880</orcidid><orcidid>https://orcid.org/0000-0003-4029-769X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1821-1832
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2018_2888807
source MEDLINE; IEEE
subjects Algorithms
Artificial neural networks
bi-directional RNN
cardiac cycle phase detection
Convolution
Deep Learning
Deep residual neural networks
densely-connected networks
Echocardiography
Echocardiography - methods
Electrocardiography
Feature extraction
Frames
gated recurrent unit
Heart - diagnostic imaging
Heart - physiology
Heart rate
Humans
Image Processing, Computer-Assisted - methods
Logic gates
Long short-term memory
Machine learning
Magnetic resonance imaging
Myocardial Contraction - physiology
Neural networks
Phase detection
Recurrent neural networks
title Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20Phase%20Detection%20in%20Echocardiograms%20With%20Densely%20Gated%20Recurrent%20Neural%20Networks%20and%20Global%20Extrema%20Loss&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Taheri%20Dezaki,%20Fatemeh&rft.date=2019-08-01&rft.volume=38&rft.issue=8&rft.spage=1821&rft.epage=1832&rft.pages=1821-1832&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2888807&rft_dat=%3Cproquest_cross%3E2268430268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268430268&rft_id=info:pmid/30582532&rft_ieee_id=8586941&rfr_iscdi=true