Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss
Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-08, Vol.38 (8), p.1821-1832 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1832 |
---|---|
container_issue | 8 |
container_start_page | 1821 |
container_title | IEEE transactions on medical imaging |
container_volume | 38 |
creator | Taheri Dezaki, Fatemeh Liao, Zhibin Luong, Christina Girgis, Hany Dhungel, Neeraj Abdi, Amir H. Behnami, Delaram Gin, Ken Rohling, Robert Abolmaesumi, Purang Tsang, Teresa |
description | Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames. |
doi_str_mv | 10.1109/TMI.2018.2888807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2018_2888807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8586941</ieee_id><sourcerecordid>2268430268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</originalsourceid><addsrcrecordid>eNpdkd9v1DAMxyPExG4b70hIKBIvvPRw0qZNHtFxHJOOH5qG4C1KUpfraJstScX235PT3faAH2zJ_tiy_SXkFYMlY6DeX3-5XHJgcsllNmiekQUTQhZcVL-ekwXwRhYANT8lZzHeALBKgHpBTksQkouSL4hfmdD2xtHvOxORfsSELvV-ov1E127n3b7sfwczRvqzT7tMTBGHB7oxCVt6hW4OAadEv-IczJBD-uvDn0jN1NLN4G3Ore9TwNHQrY_xgpx0Zoj48hjPyY9P6-vV52L7bXO5-rAtXClVKhrFZdNa1vAGOhBWgahK5zhaW4FlnWMGa8tM20rBGZZl4zqnuFJWKFVLW56Td4e5t8HfzRiTHvvocBjMhH6OmrM6f0NBU2f07X_ojZ_DlLfTnNeyKiH7TMGBciGfEbDTt6EfTXjQDPReDJ3F0Hsx9FGM3PLmOHi2I7ZPDY_fz8DrA9Aj4lNZClmripX_AHTijUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268430268</pqid></control><display><type>article</type><title>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</title><source>MEDLINE</source><source>IEEE</source><creator>Taheri Dezaki, Fatemeh ; Liao, Zhibin ; Luong, Christina ; Girgis, Hany ; Dhungel, Neeraj ; Abdi, Amir H. ; Behnami, Delaram ; Gin, Ken ; Rohling, Robert ; Abolmaesumi, Purang ; Tsang, Teresa</creator><creatorcontrib>Taheri Dezaki, Fatemeh ; Liao, Zhibin ; Luong, Christina ; Girgis, Hany ; Dhungel, Neeraj ; Abdi, Amir H. ; Behnami, Delaram ; Gin, Ken ; Rohling, Robert ; Abolmaesumi, Purang ; Tsang, Teresa</creatorcontrib><description>Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2888807</identifier><identifier>PMID: 30582532</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; bi-directional RNN ; cardiac cycle phase detection ; Convolution ; Deep Learning ; Deep residual neural networks ; densely-connected networks ; Echocardiography ; Echocardiography - methods ; Electrocardiography ; Feature extraction ; Frames ; gated recurrent unit ; Heart - diagnostic imaging ; Heart - physiology ; Heart rate ; Humans ; Image Processing, Computer-Assisted - methods ; Logic gates ; Long short-term memory ; Machine learning ; Magnetic resonance imaging ; Myocardial Contraction - physiology ; Neural networks ; Phase detection ; Recurrent neural networks</subject><ispartof>IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1821-1832</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</citedby><cites>FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</cites><orcidid>0000-0002-3169-4477 ; 0000-0001-6331-7003 ; 0000-0002-7259-8609 ; 0000-0001-9965-4511 ; 0000-0002-5985-7880 ; 0000-0003-4029-769X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8586941$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30582532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taheri Dezaki, Fatemeh</creatorcontrib><creatorcontrib>Liao, Zhibin</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Girgis, Hany</creatorcontrib><creatorcontrib>Dhungel, Neeraj</creatorcontrib><creatorcontrib>Abdi, Amir H.</creatorcontrib><creatorcontrib>Behnami, Delaram</creatorcontrib><creatorcontrib>Gin, Ken</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><title>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>bi-directional RNN</subject><subject>cardiac cycle phase detection</subject><subject>Convolution</subject><subject>Deep Learning</subject><subject>Deep residual neural networks</subject><subject>densely-connected networks</subject><subject>Echocardiography</subject><subject>Echocardiography - methods</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Frames</subject><subject>gated recurrent unit</subject><subject>Heart - diagnostic imaging</subject><subject>Heart - physiology</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Logic gates</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Myocardial Contraction - physiology</subject><subject>Neural networks</subject><subject>Phase detection</subject><subject>Recurrent neural networks</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkd9v1DAMxyPExG4b70hIKBIvvPRw0qZNHtFxHJOOH5qG4C1KUpfraJstScX235PT3faAH2zJ_tiy_SXkFYMlY6DeX3-5XHJgcsllNmiekQUTQhZcVL-ekwXwRhYANT8lZzHeALBKgHpBTksQkouSL4hfmdD2xtHvOxORfsSELvV-ov1E127n3b7sfwczRvqzT7tMTBGHB7oxCVt6hW4OAadEv-IczJBD-uvDn0jN1NLN4G3Ore9TwNHQrY_xgpx0Zoj48hjPyY9P6-vV52L7bXO5-rAtXClVKhrFZdNa1vAGOhBWgahK5zhaW4FlnWMGa8tM20rBGZZl4zqnuFJWKFVLW56Td4e5t8HfzRiTHvvocBjMhH6OmrM6f0NBU2f07X_ojZ_DlLfTnNeyKiH7TMGBciGfEbDTt6EfTXjQDPReDJ3F0Hsx9FGM3PLmOHi2I7ZPDY_fz8DrA9Aj4lNZClmripX_AHTijUI</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Taheri Dezaki, Fatemeh</creator><creator>Liao, Zhibin</creator><creator>Luong, Christina</creator><creator>Girgis, Hany</creator><creator>Dhungel, Neeraj</creator><creator>Abdi, Amir H.</creator><creator>Behnami, Delaram</creator><creator>Gin, Ken</creator><creator>Rohling, Robert</creator><creator>Abolmaesumi, Purang</creator><creator>Tsang, Teresa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3169-4477</orcidid><orcidid>https://orcid.org/0000-0001-6331-7003</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid><orcidid>https://orcid.org/0000-0001-9965-4511</orcidid><orcidid>https://orcid.org/0000-0002-5985-7880</orcidid><orcidid>https://orcid.org/0000-0003-4029-769X</orcidid></search><sort><creationdate>20190801</creationdate><title>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</title><author>Taheri Dezaki, Fatemeh ; Liao, Zhibin ; Luong, Christina ; Girgis, Hany ; Dhungel, Neeraj ; Abdi, Amir H. ; Behnami, Delaram ; Gin, Ken ; Rohling, Robert ; Abolmaesumi, Purang ; Tsang, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-79287db17270f05b90543cc2ebb40b1fc1ae6b1add8521e337cfc9299b59968b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>bi-directional RNN</topic><topic>cardiac cycle phase detection</topic><topic>Convolution</topic><topic>Deep Learning</topic><topic>Deep residual neural networks</topic><topic>densely-connected networks</topic><topic>Echocardiography</topic><topic>Echocardiography - methods</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Frames</topic><topic>gated recurrent unit</topic><topic>Heart - diagnostic imaging</topic><topic>Heart - physiology</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Logic gates</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Myocardial Contraction - physiology</topic><topic>Neural networks</topic><topic>Phase detection</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Taheri Dezaki, Fatemeh</creatorcontrib><creatorcontrib>Liao, Zhibin</creatorcontrib><creatorcontrib>Luong, Christina</creatorcontrib><creatorcontrib>Girgis, Hany</creatorcontrib><creatorcontrib>Dhungel, Neeraj</creatorcontrib><creatorcontrib>Abdi, Amir H.</creatorcontrib><creatorcontrib>Behnami, Delaram</creatorcontrib><creatorcontrib>Gin, Ken</creatorcontrib><creatorcontrib>Rohling, Robert</creatorcontrib><creatorcontrib>Abolmaesumi, Purang</creatorcontrib><creatorcontrib>Tsang, Teresa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taheri Dezaki, Fatemeh</au><au>Liao, Zhibin</au><au>Luong, Christina</au><au>Girgis, Hany</au><au>Dhungel, Neeraj</au><au>Abdi, Amir H.</au><au>Behnami, Delaram</au><au>Gin, Ken</au><au>Rohling, Robert</au><au>Abolmaesumi, Purang</au><au>Tsang, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>38</volume><issue>8</issue><spage>1821</spage><epage>1832</epage><pages>1821-1832</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30582532</pmid><doi>10.1109/TMI.2018.2888807</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3169-4477</orcidid><orcidid>https://orcid.org/0000-0001-6331-7003</orcidid><orcidid>https://orcid.org/0000-0002-7259-8609</orcidid><orcidid>https://orcid.org/0000-0001-9965-4511</orcidid><orcidid>https://orcid.org/0000-0002-5985-7880</orcidid><orcidid>https://orcid.org/0000-0003-4029-769X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1821-1832 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMI_2018_2888807 |
source | MEDLINE; IEEE |
subjects | Algorithms Artificial neural networks bi-directional RNN cardiac cycle phase detection Convolution Deep Learning Deep residual neural networks densely-connected networks Echocardiography Echocardiography - methods Electrocardiography Feature extraction Frames gated recurrent unit Heart - diagnostic imaging Heart - physiology Heart rate Humans Image Processing, Computer-Assisted - methods Logic gates Long short-term memory Machine learning Magnetic resonance imaging Myocardial Contraction - physiology Neural networks Phase detection Recurrent neural networks |
title | Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20Phase%20Detection%20in%20Echocardiograms%20With%20Densely%20Gated%20Recurrent%20Neural%20Networks%20and%20Global%20Extrema%20Loss&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Taheri%20Dezaki,%20Fatemeh&rft.date=2019-08-01&rft.volume=38&rft.issue=8&rft.spage=1821&rft.epage=1832&rft.pages=1821-1832&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2888807&rft_dat=%3Cproquest_cross%3E2268430268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268430268&rft_id=info:pmid/30582532&rft_ieee_id=8586941&rfr_iscdi=true |