Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty

Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2015-03, Vol.34 (3), p.748-760
Hauptverfasser: Kyungsang Kim, Jong Chul Ye, Worstell, William, Jinsong Ouyang, Rakvongthai, Yothin, El Fakhri, Georges, Quanzheng Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 3
container_start_page 748
container_title IEEE transactions on medical imaging
container_volume 34
creator Kyungsang Kim
Jong Chul Ye
Worstell, William
Jinsong Ouyang
Rakvongthai, Yothin
El Fakhri, Georges
Quanzheng Li
description Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.
doi_str_mv 10.1109/TMI.2014.2380993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMI_2014_2380993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6985637</ieee_id><sourcerecordid>1660658378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-fd364d98b1a10d5da3f5bc53d597f74c9c7af97441ef960bb95d20858949d0423</originalsourceid><addsrcrecordid>eNpFkDtPwzAYRS0EoqWwIyGhjCwpn-3YsUeoeFQqouoDsUWO7UAgTYKdqOq_J1VLme5wz73DQegSwxBjkLeLl_GQAI6GhAqQkh6hPmZMhIRF78eoDyQWIQAnPXTm_Rd0JAN5inqEMUpwDH00m9fKeRu-5XYdzGurG6eKYLQIZlZXpW9cq5u8KoOlz8uPf2CqGv0Z3itvTTCp1uFMld_B1JaqaDbn6CRThbcX-xyg5ePDYvQcTl6fxqO7Sagp502YGcojI0WKFQbDjKIZSzWjhsk4iyMtdawyGUcRtpnkkKaSGQKCCRlJAxGhA3Sz-61d9dNa3ySr3GtbFKq0VesTzDlwJmgsOhR2qHaV985mSe3ylXKbBEOyNZl0JpOtyWRvsptc79_bdGXNYfCnrgOudkBurT3UXArGaUx_AXGwdpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660658378</pqid></control><display><type>article</type><title>Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty</title><source>IEEE Electronic Library (IEL)</source><creator>Kyungsang Kim ; Jong Chul Ye ; Worstell, William ; Jinsong Ouyang ; Rakvongthai, Yothin ; El Fakhri, Georges ; Quanzheng Li</creator><creatorcontrib>Kyungsang Kim ; Jong Chul Ye ; Worstell, William ; Jinsong Ouyang ; Rakvongthai, Yothin ; El Fakhri, Georges ; Quanzheng Li</creatorcontrib><description>Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2014.2380993</identifier><identifier>PMID: 25532170</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Atherosclerosis - diagnosis ; Computed tomography ; Computer Simulation ; Concave-convex procedure ; Convex functions ; Cost function ; Detectors ; difference of convex functions algorithm ; Humans ; Image reconstruction ; low-rank ; Materials ; patch ; Phantoms, Imaging ; Poisson Distribution ; separable quadratic surrogate ; spectral computed tomography (CT) ; Spectrometry, X-Ray Emission ; Switches ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2015-03, Vol.34 (3), p.748-760</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-fd364d98b1a10d5da3f5bc53d597f74c9c7af97441ef960bb95d20858949d0423</citedby><cites>FETCH-LOGICAL-c366t-fd364d98b1a10d5da3f5bc53d597f74c9c7af97441ef960bb95d20858949d0423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6985637$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6985637$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25532170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyungsang Kim</creatorcontrib><creatorcontrib>Jong Chul Ye</creatorcontrib><creatorcontrib>Worstell, William</creatorcontrib><creatorcontrib>Jinsong Ouyang</creatorcontrib><creatorcontrib>Rakvongthai, Yothin</creatorcontrib><creatorcontrib>El Fakhri, Georges</creatorcontrib><creatorcontrib>Quanzheng Li</creatorcontrib><title>Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.</description><subject>Algorithms</subject><subject>Atherosclerosis - diagnosis</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Concave-convex procedure</subject><subject>Convex functions</subject><subject>Cost function</subject><subject>Detectors</subject><subject>difference of convex functions algorithm</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>low-rank</subject><subject>Materials</subject><subject>patch</subject><subject>Phantoms, Imaging</subject><subject>Poisson Distribution</subject><subject>separable quadratic surrogate</subject><subject>spectral computed tomography (CT)</subject><subject>Spectrometry, X-Ray Emission</subject><subject>Switches</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkDtPwzAYRS0EoqWwIyGhjCwpn-3YsUeoeFQqouoDsUWO7UAgTYKdqOq_J1VLme5wz73DQegSwxBjkLeLl_GQAI6GhAqQkh6hPmZMhIRF78eoDyQWIQAnPXTm_Rd0JAN5inqEMUpwDH00m9fKeRu-5XYdzGurG6eKYLQIZlZXpW9cq5u8KoOlz8uPf2CqGv0Z3itvTTCp1uFMld_B1JaqaDbn6CRThbcX-xyg5ePDYvQcTl6fxqO7Sagp502YGcojI0WKFQbDjKIZSzWjhsk4iyMtdawyGUcRtpnkkKaSGQKCCRlJAxGhA3Sz-61d9dNa3ySr3GtbFKq0VesTzDlwJmgsOhR2qHaV985mSe3ylXKbBEOyNZl0JpOtyWRvsptc79_bdGXNYfCnrgOudkBurT3UXArGaUx_AXGwdpw</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Kyungsang Kim</creator><creator>Jong Chul Ye</creator><creator>Worstell, William</creator><creator>Jinsong Ouyang</creator><creator>Rakvongthai, Yothin</creator><creator>El Fakhri, Georges</creator><creator>Quanzheng Li</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty</title><author>Kyungsang Kim ; Jong Chul Ye ; Worstell, William ; Jinsong Ouyang ; Rakvongthai, Yothin ; El Fakhri, Georges ; Quanzheng Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-fd364d98b1a10d5da3f5bc53d597f74c9c7af97441ef960bb95d20858949d0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Atherosclerosis - diagnosis</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Concave-convex procedure</topic><topic>Convex functions</topic><topic>Cost function</topic><topic>Detectors</topic><topic>difference of convex functions algorithm</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>low-rank</topic><topic>Materials</topic><topic>patch</topic><topic>Phantoms, Imaging</topic><topic>Poisson Distribution</topic><topic>separable quadratic surrogate</topic><topic>spectral computed tomography (CT)</topic><topic>Spectrometry, X-Ray Emission</topic><topic>Switches</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyungsang Kim</creatorcontrib><creatorcontrib>Jong Chul Ye</creatorcontrib><creatorcontrib>Worstell, William</creatorcontrib><creatorcontrib>Jinsong Ouyang</creatorcontrib><creatorcontrib>Rakvongthai, Yothin</creatorcontrib><creatorcontrib>El Fakhri, Georges</creatorcontrib><creatorcontrib>Quanzheng Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyungsang Kim</au><au>Jong Chul Ye</au><au>Worstell, William</au><au>Jinsong Ouyang</au><au>Rakvongthai, Yothin</au><au>El Fakhri, Georges</au><au>Quanzheng Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-03</date><risdate>2015</risdate><volume>34</volume><issue>3</issue><spage>748</spage><epage>760</epage><pages>748-760</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25532170</pmid><doi>10.1109/TMI.2014.2380993</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-03, Vol.34 (3), p.748-760
issn 0278-0062
1558-254X
language eng
recordid cdi_crossref_primary_10_1109_TMI_2014_2380993
source IEEE Electronic Library (IEL)
subjects Algorithms
Atherosclerosis - diagnosis
Computed tomography
Computer Simulation
Concave-convex procedure
Convex functions
Cost function
Detectors
difference of convex functions algorithm
Humans
Image reconstruction
low-rank
Materials
patch
Phantoms, Imaging
Poisson Distribution
separable quadratic surrogate
spectral computed tomography (CT)
Spectrometry, X-Ray Emission
Switches
Tomography, X-Ray Computed - instrumentation
Tomography, X-Ray Computed - methods
title Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse-View%20Spectral%20CT%20Reconstruction%20Using%20Spectral%20Patch-Based%20Low-Rank%20Penalty&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kyungsang%20Kim&rft.date=2015-03&rft.volume=34&rft.issue=3&rft.spage=748&rft.epage=760&rft.pages=748-760&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2014.2380993&rft_dat=%3Cproquest_RIE%3E1660658378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660658378&rft_id=info:pmid/25532170&rft_ieee_id=6985637&rfr_iscdi=true