Design, Optimization, and Experimental Validation of a Handheld Nonconstant-Curvature Hybrid-Structure Robotic Instrument for Maxillary Sinus Surgery

Current robotic flexible medical tools employed in maxillary sinus surgery have shown certain limitations in dexterity and stiffness, resulting in large surgical incisions and potential unintended damage to patients. This article presents a novel four-degree-of-freedom handheld nonconstant-curvature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-08, Vol.29 (4), p.3074-3082
Hauptverfasser: Wang, Xuchen, Ma, Xin, Zhu, Puchen, Ng, Wee Shen, Zhang, Huayu, Xia, Xianfeng, Taylor, Russell H., Au, Kwok Wai Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3082
container_issue 4
container_start_page 3074
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Wang, Xuchen
Ma, Xin
Zhu, Puchen
Ng, Wee Shen
Zhang, Huayu
Xia, Xianfeng
Taylor, Russell H.
Au, Kwok Wai Samuel
description Current robotic flexible medical tools employed in maxillary sinus surgery have shown certain limitations in dexterity and stiffness, resulting in large surgical incisions and potential unintended damage to patients. This article presents a novel four-degree-of-freedom handheld nonconstant-curvature hybrid-structure robotic instrument (HNHRI), which is 3.5 mm in diameter and has significant improvement in both dexterity and stiffness. To enhance dexterity and stiffness, a hybrid-structure instrument with multiple layers and nonconstant curvatures is proposed. A compact and lightweight actuation system is designed to fulfill the requirements of handheld surgical device. A flexible section curvature optimization framework is introduced to enhance reachability and dexterity. Through bench-top experiments and simulation surgery, its performance is validated. The flexible section curvature optimization framework increases the reachability to target region to 100% and achieves an average dexterity index of 48% within the maxillary sinus. Compared to current robotic flexible instruments, bending and torsional stiffness are improved by 197% and 150%, respectively. Utilizing the HNHRI in maxillary sinus surgery offers notable enhancement in both dexterity and stiffness, which has the potential to substantially improve the efficacy and safety of the procedures. These advancements might reduce surgical incisions and minimize surgery-related damage, thereby improving the clinical outcomes for patients.
doi_str_mv 10.1109/TMECH.2024.3402445
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2024_3402445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552067</ieee_id><sourcerecordid>3094517844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-f1fb0638d01e84038d07542983ba96270bd290f6e1760cc56dfb15d988629cc03</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4iFJbakjBPntUSh0EotlWhB7CLHcYqrNA62g1r-g__FfSzYjGc8915bB6FrAgNCIL1fTIfZaOCDTwcBdZWGJ6hHUko8IPTj1PWQBB6lQXiOLoxZAQAlQHro91EYuWzu8Ky1ci1_mJXKTawp8XDTCi3XorGsxu-sluV-iVWFGR45xaeoS_yiGq4aY1ljvazT38x2WuDRttCy9OZWd3x_8aoKZSXHYyfV3S4UV0rjKdvIumZ6i-ey6Qyed3op9PYSnVWsNuLqePbR29NwkY28yex5nD1MPE7i2HoVqQqIgqQEIhIKuyYOqZ8mQcHSyI-hKP0UqkiQOALOw6isChKWaZJEfso5BH10e8httfrqhLH5SnW6cU_mAaQ0JHHimPWRf1BxrYzRospbx8V9OieQ7_Dne_z5Dn9-xO9MNweTFEL8M4ShD1Ec_AE6P4PI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094517844</pqid></control><display><type>article</type><title>Design, Optimization, and Experimental Validation of a Handheld Nonconstant-Curvature Hybrid-Structure Robotic Instrument for Maxillary Sinus Surgery</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xuchen ; Ma, Xin ; Zhu, Puchen ; Ng, Wee Shen ; Zhang, Huayu ; Xia, Xianfeng ; Taylor, Russell H. ; Au, Kwok Wai Samuel</creator><creatorcontrib>Wang, Xuchen ; Ma, Xin ; Zhu, Puchen ; Ng, Wee Shen ; Zhang, Huayu ; Xia, Xianfeng ; Taylor, Russell H. ; Au, Kwok Wai Samuel</creatorcontrib><description>Current robotic flexible medical tools employed in maxillary sinus surgery have shown certain limitations in dexterity and stiffness, resulting in large surgical incisions and potential unintended damage to patients. This article presents a novel four-degree-of-freedom handheld nonconstant-curvature hybrid-structure robotic instrument (HNHRI), which is 3.5 mm in diameter and has significant improvement in both dexterity and stiffness. To enhance dexterity and stiffness, a hybrid-structure instrument with multiple layers and nonconstant curvatures is proposed. A compact and lightweight actuation system is designed to fulfill the requirements of handheld surgical device. A flexible section curvature optimization framework is introduced to enhance reachability and dexterity. Through bench-top experiments and simulation surgery, its performance is validated. The flexible section curvature optimization framework increases the reachability to target region to 100% and achieves an average dexterity index of 48% within the maxillary sinus. Compared to current robotic flexible instruments, bending and torsional stiffness are improved by 197% and 150%, respectively. Utilizing the HNHRI in maxillary sinus surgery offers notable enhancement in both dexterity and stiffness, which has the potential to substantially improve the efficacy and safety of the procedures. These advancements might reduce surgical incisions and minimize surgery-related damage, thereby improving the clinical outcomes for patients.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3402445</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Bending ; Cables ; Curvature ; Damage ; Design optimization ; Endoscopes ; flexible robot ; Instruments ; medical robotics ; Optimization ; Otolaryngology ; Robotic surgery ; Robotics ; Robots ; Sinuses ; Stiffness ; Surgery ; Surgical instruments</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.3074-3082</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-f1fb0638d01e84038d07542983ba96270bd290f6e1760cc56dfb15d988629cc03</cites><orcidid>0000-0003-4718-8189 ; 0000-0001-5602-7569 ; 0000-0001-6272-1100 ; 0000-0002-0119-3268 ; 0000-0003-3446-4535 ; 0000-0002-0114-7499 ; 0000-0002-9325-6384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10552067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xuchen</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Zhu, Puchen</creatorcontrib><creatorcontrib>Ng, Wee Shen</creatorcontrib><creatorcontrib>Zhang, Huayu</creatorcontrib><creatorcontrib>Xia, Xianfeng</creatorcontrib><creatorcontrib>Taylor, Russell H.</creatorcontrib><creatorcontrib>Au, Kwok Wai Samuel</creatorcontrib><title>Design, Optimization, and Experimental Validation of a Handheld Nonconstant-Curvature Hybrid-Structure Robotic Instrument for Maxillary Sinus Surgery</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Current robotic flexible medical tools employed in maxillary sinus surgery have shown certain limitations in dexterity and stiffness, resulting in large surgical incisions and potential unintended damage to patients. This article presents a novel four-degree-of-freedom handheld nonconstant-curvature hybrid-structure robotic instrument (HNHRI), which is 3.5 mm in diameter and has significant improvement in both dexterity and stiffness. To enhance dexterity and stiffness, a hybrid-structure instrument with multiple layers and nonconstant curvatures is proposed. A compact and lightweight actuation system is designed to fulfill the requirements of handheld surgical device. A flexible section curvature optimization framework is introduced to enhance reachability and dexterity. Through bench-top experiments and simulation surgery, its performance is validated. The flexible section curvature optimization framework increases the reachability to target region to 100% and achieves an average dexterity index of 48% within the maxillary sinus. Compared to current robotic flexible instruments, bending and torsional stiffness are improved by 197% and 150%, respectively. Utilizing the HNHRI in maxillary sinus surgery offers notable enhancement in both dexterity and stiffness, which has the potential to substantially improve the efficacy and safety of the procedures. These advancements might reduce surgical incisions and minimize surgery-related damage, thereby improving the clinical outcomes for patients.</description><subject>Actuation</subject><subject>Bending</subject><subject>Cables</subject><subject>Curvature</subject><subject>Damage</subject><subject>Design optimization</subject><subject>Endoscopes</subject><subject>flexible robot</subject><subject>Instruments</subject><subject>medical robotics</subject><subject>Optimization</subject><subject>Otolaryngology</subject><subject>Robotic surgery</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sinuses</subject><subject>Stiffness</subject><subject>Surgery</subject><subject>Surgical instruments</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwA4iFJbakjBPntUSh0EotlWhB7CLHcYqrNA62g1r-g__FfSzYjGc8915bB6FrAgNCIL1fTIfZaOCDTwcBdZWGJ6hHUko8IPTj1PWQBB6lQXiOLoxZAQAlQHro91EYuWzu8Ky1ci1_mJXKTawp8XDTCi3XorGsxu-sluV-iVWFGR45xaeoS_yiGq4aY1ljvazT38x2WuDRttCy9OZWd3x_8aoKZSXHYyfV3S4UV0rjKdvIumZ6i-ey6Qyed3op9PYSnVWsNuLqePbR29NwkY28yex5nD1MPE7i2HoVqQqIgqQEIhIKuyYOqZ8mQcHSyI-hKP0UqkiQOALOw6isChKWaZJEfso5BH10e8httfrqhLH5SnW6cU_mAaQ0JHHimPWRf1BxrYzRospbx8V9OieQ7_Dne_z5Dn9-xO9MNweTFEL8M4ShD1Ec_AE6P4PI</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Wang, Xuchen</creator><creator>Ma, Xin</creator><creator>Zhu, Puchen</creator><creator>Ng, Wee Shen</creator><creator>Zhang, Huayu</creator><creator>Xia, Xianfeng</creator><creator>Taylor, Russell H.</creator><creator>Au, Kwok Wai Samuel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4718-8189</orcidid><orcidid>https://orcid.org/0000-0001-5602-7569</orcidid><orcidid>https://orcid.org/0000-0001-6272-1100</orcidid><orcidid>https://orcid.org/0000-0002-0119-3268</orcidid><orcidid>https://orcid.org/0000-0003-3446-4535</orcidid><orcidid>https://orcid.org/0000-0002-0114-7499</orcidid><orcidid>https://orcid.org/0000-0002-9325-6384</orcidid></search><sort><creationdate>202408</creationdate><title>Design, Optimization, and Experimental Validation of a Handheld Nonconstant-Curvature Hybrid-Structure Robotic Instrument for Maxillary Sinus Surgery</title><author>Wang, Xuchen ; Ma, Xin ; Zhu, Puchen ; Ng, Wee Shen ; Zhang, Huayu ; Xia, Xianfeng ; Taylor, Russell H. ; Au, Kwok Wai Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-f1fb0638d01e84038d07542983ba96270bd290f6e1760cc56dfb15d988629cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Bending</topic><topic>Cables</topic><topic>Curvature</topic><topic>Damage</topic><topic>Design optimization</topic><topic>Endoscopes</topic><topic>flexible robot</topic><topic>Instruments</topic><topic>medical robotics</topic><topic>Optimization</topic><topic>Otolaryngology</topic><topic>Robotic surgery</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sinuses</topic><topic>Stiffness</topic><topic>Surgery</topic><topic>Surgical instruments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuchen</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>Zhu, Puchen</creatorcontrib><creatorcontrib>Ng, Wee Shen</creatorcontrib><creatorcontrib>Zhang, Huayu</creatorcontrib><creatorcontrib>Xia, Xianfeng</creatorcontrib><creatorcontrib>Taylor, Russell H.</creatorcontrib><creatorcontrib>Au, Kwok Wai Samuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xuchen</au><au>Ma, Xin</au><au>Zhu, Puchen</au><au>Ng, Wee Shen</au><au>Zhang, Huayu</au><au>Xia, Xianfeng</au><au>Taylor, Russell H.</au><au>Au, Kwok Wai Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Optimization, and Experimental Validation of a Handheld Nonconstant-Curvature Hybrid-Structure Robotic Instrument for Maxillary Sinus Surgery</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>3074</spage><epage>3082</epage><pages>3074-3082</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Current robotic flexible medical tools employed in maxillary sinus surgery have shown certain limitations in dexterity and stiffness, resulting in large surgical incisions and potential unintended damage to patients. This article presents a novel four-degree-of-freedom handheld nonconstant-curvature hybrid-structure robotic instrument (HNHRI), which is 3.5 mm in diameter and has significant improvement in both dexterity and stiffness. To enhance dexterity and stiffness, a hybrid-structure instrument with multiple layers and nonconstant curvatures is proposed. A compact and lightweight actuation system is designed to fulfill the requirements of handheld surgical device. A flexible section curvature optimization framework is introduced to enhance reachability and dexterity. Through bench-top experiments and simulation surgery, its performance is validated. The flexible section curvature optimization framework increases the reachability to target region to 100% and achieves an average dexterity index of 48% within the maxillary sinus. Compared to current robotic flexible instruments, bending and torsional stiffness are improved by 197% and 150%, respectively. Utilizing the HNHRI in maxillary sinus surgery offers notable enhancement in both dexterity and stiffness, which has the potential to substantially improve the efficacy and safety of the procedures. These advancements might reduce surgical incisions and minimize surgery-related damage, thereby improving the clinical outcomes for patients.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2024.3402445</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4718-8189</orcidid><orcidid>https://orcid.org/0000-0001-5602-7569</orcidid><orcidid>https://orcid.org/0000-0001-6272-1100</orcidid><orcidid>https://orcid.org/0000-0002-0119-3268</orcidid><orcidid>https://orcid.org/0000-0003-3446-4535</orcidid><orcidid>https://orcid.org/0000-0002-0114-7499</orcidid><orcidid>https://orcid.org/0000-0002-9325-6384</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-08, Vol.29 (4), p.3074-3082
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2024_3402445
source IEEE Electronic Library (IEL)
subjects Actuation
Bending
Cables
Curvature
Damage
Design optimization
Endoscopes
flexible robot
Instruments
medical robotics
Optimization
Otolaryngology
Robotic surgery
Robotics
Robots
Sinuses
Stiffness
Surgery
Surgical instruments
title Design, Optimization, and Experimental Validation of a Handheld Nonconstant-Curvature Hybrid-Structure Robotic Instrument for Maxillary Sinus Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Optimization,%20and%20Experimental%20Validation%20of%20a%20Handheld%20Nonconstant-Curvature%20Hybrid-Structure%20Robotic%20Instrument%20for%20Maxillary%20Sinus%20Surgery&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Wang,%20Xuchen&rft.date=2024-08&rft.volume=29&rft.issue=4&rft.spage=3074&rft.epage=3082&rft.pages=3074-3082&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3402445&rft_dat=%3Cproquest_RIE%3E3094517844%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094517844&rft_id=info:pmid/&rft_ieee_id=10552067&rfr_iscdi=true