Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation
Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent f...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-12, Vol.29 (6), p.4504-4513 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4513 |
---|---|
container_issue | 6 |
container_start_page | 4504 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Zhao, Qingxiang Wang, Shuai Hu, Jian Liu, Hongbin Chu, Henry K. |
description | Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around \text{6}\,\text{mm} for the \text{120}\,\text{mm} length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications. |
doi_str_mv | 10.1109/TMECH.2024.3378274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2024_3378274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10493047</ieee_id><sourcerecordid>3146586513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-dbf37880693d933e75287f3b6effa88e163b7a42a2451840a0973db9ad2e05f43</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEmPwBxCHSpw7nDht0iMqgyENgWAIblG6JtBpa0aSHvj3tGxCnGz5vWdbHyHnFCaUQnG1eJiWswkDxieIQjLBD8iIFpymQPn7Yd-DxJRzzI7JSQgrAOAU6Ig8la6N3q3Xxic3JjQfbWKdT3Ty4mxMBrFpu26TPLvKxeStiZ_DcNl5b9o_3XWhN0QdG9eekiOr18Gc7euYvN5OF-UsnT_e3ZfX83TJuIhpXdn-Twl5gXWBaETGpLBY5cZaLaWhOVZCc6YZz6jkoKEQWFeFrpmBzHIck8vd3q13X50JUa1c59v-pELK80zmGcXexXaupXcheGPV1jcb7b8VBTWQU7_k1EBO7cn1oYtdqDHG_AvwAoEL_AFdG2oT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586513</pqid></control><display><type>article</type><title>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Qingxiang ; Wang, Shuai ; Hu, Jian ; Liu, Hongbin ; Chu, Henry K.</creator><creatorcontrib>Zhao, Qingxiang ; Wang, Shuai ; Hu, Jian ; Liu, Hongbin ; Chu, Henry K.</creatorcontrib><description><![CDATA[Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around <inline-formula><tex-math notation="LaTeX"> \text{6}\,\text{mm}</tex-math></inline-formula> for the <inline-formula><tex-math notation="LaTeX"> \text{120}\,\text{mm}</tex-math></inline-formula> length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.]]></description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3378274</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Algorithms ; Bending ; Concurrent self-rotation and positioning ; Confined spaces ; constrained optimization ; Constraint handling ; continuum robot ; Continuum robots ; Control systems design ; Deformation effects ; Electron tubes ; End effectors ; Formability ; Jacobian-based correction ; Kinematics ; model predictive control (MPC) ; Pneumatic systems ; Predictive control ; Robot arms ; Robot control ; Robot dynamics ; Robots ; Rotating shafts ; Rotation ; Shafts ; Shape control ; Task analysis</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4504-4513</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-dbf37880693d933e75287f3b6effa88e163b7a42a2451840a0973db9ad2e05f43</cites><orcidid>0000-0002-3068-6854 ; 0009-0005-6792-9441 ; 0000-0002-4315-7556 ; 0000-0001-7524-5342 ; 0000-0001-7225-6927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10493047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10493047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Qingxiang</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Liu, Hongbin</creatorcontrib><creatorcontrib>Chu, Henry K.</creatorcontrib><title>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description><![CDATA[Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around <inline-formula><tex-math notation="LaTeX"> \text{6}\,\text{mm}</tex-math></inline-formula> for the <inline-formula><tex-math notation="LaTeX"> \text{120}\,\text{mm}</tex-math></inline-formula> length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.]]></description><subject>Actuation</subject><subject>Algorithms</subject><subject>Bending</subject><subject>Concurrent self-rotation and positioning</subject><subject>Confined spaces</subject><subject>constrained optimization</subject><subject>Constraint handling</subject><subject>continuum robot</subject><subject>Continuum robots</subject><subject>Control systems design</subject><subject>Deformation effects</subject><subject>Electron tubes</subject><subject>End effectors</subject><subject>Formability</subject><subject>Jacobian-based correction</subject><subject>Kinematics</subject><subject>model predictive control (MPC)</subject><subject>Pneumatic systems</subject><subject>Predictive control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Rotating shafts</subject><subject>Rotation</subject><subject>Shafts</subject><subject>Shape control</subject><subject>Task analysis</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEmPwBxCHSpw7nDht0iMqgyENgWAIblG6JtBpa0aSHvj3tGxCnGz5vWdbHyHnFCaUQnG1eJiWswkDxieIQjLBD8iIFpymQPn7Yd-DxJRzzI7JSQgrAOAU6Ig8la6N3q3Xxic3JjQfbWKdT3Ty4mxMBrFpu26TPLvKxeStiZ_DcNl5b9o_3XWhN0QdG9eekiOr18Gc7euYvN5OF-UsnT_e3ZfX83TJuIhpXdn-Twl5gXWBaETGpLBY5cZaLaWhOVZCc6YZz6jkoKEQWFeFrpmBzHIck8vd3q13X50JUa1c59v-pELK80zmGcXexXaupXcheGPV1jcb7b8VBTWQU7_k1EBO7cn1oYtdqDHG_AvwAoEL_AFdG2oT</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhao, Qingxiang</creator><creator>Wang, Shuai</creator><creator>Hu, Jian</creator><creator>Liu, Hongbin</creator><creator>Chu, Henry K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3068-6854</orcidid><orcidid>https://orcid.org/0009-0005-6792-9441</orcidid><orcidid>https://orcid.org/0000-0002-4315-7556</orcidid><orcidid>https://orcid.org/0000-0001-7524-5342</orcidid><orcidid>https://orcid.org/0000-0001-7225-6927</orcidid></search><sort><creationdate>20241201</creationdate><title>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</title><author>Zhao, Qingxiang ; Wang, Shuai ; Hu, Jian ; Liu, Hongbin ; Chu, Henry K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-dbf37880693d933e75287f3b6effa88e163b7a42a2451840a0973db9ad2e05f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>Bending</topic><topic>Concurrent self-rotation and positioning</topic><topic>Confined spaces</topic><topic>constrained optimization</topic><topic>Constraint handling</topic><topic>continuum robot</topic><topic>Continuum robots</topic><topic>Control systems design</topic><topic>Deformation effects</topic><topic>Electron tubes</topic><topic>End effectors</topic><topic>Formability</topic><topic>Jacobian-based correction</topic><topic>Kinematics</topic><topic>model predictive control (MPC)</topic><topic>Pneumatic systems</topic><topic>Predictive control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Rotating shafts</topic><topic>Rotation</topic><topic>Shafts</topic><topic>Shape control</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qingxiang</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Liu, Hongbin</creatorcontrib><creatorcontrib>Chu, Henry K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Qingxiang</au><au>Wang, Shuai</au><au>Hu, Jian</au><au>Liu, Hongbin</au><au>Chu, Henry K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>4504</spage><epage>4513</epage><pages>4504-4513</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract><![CDATA[Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around <inline-formula><tex-math notation="LaTeX"> \text{6}\,\text{mm}</tex-math></inline-formula> for the <inline-formula><tex-math notation="LaTeX"> \text{120}\,\text{mm}</tex-math></inline-formula> length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2024.3378274</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3068-6854</orcidid><orcidid>https://orcid.org/0009-0005-6792-9441</orcidid><orcidid>https://orcid.org/0000-0002-4315-7556</orcidid><orcidid>https://orcid.org/0000-0001-7524-5342</orcidid><orcidid>https://orcid.org/0000-0001-7225-6927</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4504-4513 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2024_3378274 |
source | IEEE Electronic Library (IEL) |
subjects | Actuation Algorithms Bending Concurrent self-rotation and positioning Confined spaces constrained optimization Constraint handling continuum robot Continuum robots Control systems design Deformation effects Electron tubes End effectors Formability Jacobian-based correction Kinematics model predictive control (MPC) Pneumatic systems Predictive control Robot arms Robot control Robot dynamics Robots Rotating shafts Rotation Shafts Shape control Task analysis |
title | Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controller%20Design%20for%20a%20Soft%20Continuum%20Robot%20With%20Concurrent%20Continuous%20Rotation&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhao,%20Qingxiang&rft.date=2024-12-01&rft.volume=29&rft.issue=6&rft.spage=4504&rft.epage=4513&rft.pages=4504-4513&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3378274&rft_dat=%3Cproquest_RIE%3E3146586513%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586513&rft_id=info:pmid/&rft_ieee_id=10493047&rfr_iscdi=true |