Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation

Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-12, Vol.29 (6), p.4504-4513
Hauptverfasser: Zhao, Qingxiang, Wang, Shuai, Hu, Jian, Liu, Hongbin, Chu, Henry K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4513
container_issue 6
container_start_page 4504
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Zhao, Qingxiang
Wang, Shuai
Hu, Jian
Liu, Hongbin
Chu, Henry K.
description Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around \text{6}\,\text{mm} for the \text{120}\,\text{mm} length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.
doi_str_mv 10.1109/TMECH.2024.3378274
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2024_3378274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10493047</ieee_id><sourcerecordid>3146586513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-dbf37880693d933e75287f3b6effa88e163b7a42a2451840a0973db9ad2e05f43</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEmPwBxCHSpw7nDht0iMqgyENgWAIblG6JtBpa0aSHvj3tGxCnGz5vWdbHyHnFCaUQnG1eJiWswkDxieIQjLBD8iIFpymQPn7Yd-DxJRzzI7JSQgrAOAU6Ig8la6N3q3Xxic3JjQfbWKdT3Ty4mxMBrFpu26TPLvKxeStiZ_DcNl5b9o_3XWhN0QdG9eekiOr18Gc7euYvN5OF-UsnT_e3ZfX83TJuIhpXdn-Twl5gXWBaETGpLBY5cZaLaWhOVZCc6YZz6jkoKEQWFeFrpmBzHIck8vd3q13X50JUa1c59v-pELK80zmGcXexXaupXcheGPV1jcb7b8VBTWQU7_k1EBO7cn1oYtdqDHG_AvwAoEL_AFdG2oT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586513</pqid></control><display><type>article</type><title>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Qingxiang ; Wang, Shuai ; Hu, Jian ; Liu, Hongbin ; Chu, Henry K.</creator><creatorcontrib>Zhao, Qingxiang ; Wang, Shuai ; Hu, Jian ; Liu, Hongbin ; Chu, Henry K.</creatorcontrib><description><![CDATA[Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around <inline-formula><tex-math notation="LaTeX"> \text{6}\,\text{mm}</tex-math></inline-formula> for the <inline-formula><tex-math notation="LaTeX"> \text{120}\,\text{mm}</tex-math></inline-formula> length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.]]></description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3378274</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Algorithms ; Bending ; Concurrent self-rotation and positioning ; Confined spaces ; constrained optimization ; Constraint handling ; continuum robot ; Continuum robots ; Control systems design ; Deformation effects ; Electron tubes ; End effectors ; Formability ; Jacobian-based correction ; Kinematics ; model predictive control (MPC) ; Pneumatic systems ; Predictive control ; Robot arms ; Robot control ; Robot dynamics ; Robots ; Rotating shafts ; Rotation ; Shafts ; Shape control ; Task analysis</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4504-4513</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-dbf37880693d933e75287f3b6effa88e163b7a42a2451840a0973db9ad2e05f43</cites><orcidid>0000-0002-3068-6854 ; 0009-0005-6792-9441 ; 0000-0002-4315-7556 ; 0000-0001-7524-5342 ; 0000-0001-7225-6927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10493047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10493047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Qingxiang</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Liu, Hongbin</creatorcontrib><creatorcontrib>Chu, Henry K.</creatorcontrib><title>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description><![CDATA[Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around <inline-formula><tex-math notation="LaTeX"> \text{6}\,\text{mm}</tex-math></inline-formula> for the <inline-formula><tex-math notation="LaTeX"> \text{120}\,\text{mm}</tex-math></inline-formula> length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.]]></description><subject>Actuation</subject><subject>Algorithms</subject><subject>Bending</subject><subject>Concurrent self-rotation and positioning</subject><subject>Confined spaces</subject><subject>constrained optimization</subject><subject>Constraint handling</subject><subject>continuum robot</subject><subject>Continuum robots</subject><subject>Control systems design</subject><subject>Deformation effects</subject><subject>Electron tubes</subject><subject>End effectors</subject><subject>Formability</subject><subject>Jacobian-based correction</subject><subject>Kinematics</subject><subject>model predictive control (MPC)</subject><subject>Pneumatic systems</subject><subject>Predictive control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Rotating shafts</subject><subject>Rotation</subject><subject>Shafts</subject><subject>Shape control</subject><subject>Task analysis</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEmPwBxCHSpw7nDht0iMqgyENgWAIblG6JtBpa0aSHvj3tGxCnGz5vWdbHyHnFCaUQnG1eJiWswkDxieIQjLBD8iIFpymQPn7Yd-DxJRzzI7JSQgrAOAU6Ig8la6N3q3Xxic3JjQfbWKdT3Ty4mxMBrFpu26TPLvKxeStiZ_DcNl5b9o_3XWhN0QdG9eekiOr18Gc7euYvN5OF-UsnT_e3ZfX83TJuIhpXdn-Twl5gXWBaETGpLBY5cZaLaWhOVZCc6YZz6jkoKEQWFeFrpmBzHIck8vd3q13X50JUa1c59v-pELK80zmGcXexXaupXcheGPV1jcb7b8VBTWQU7_k1EBO7cn1oYtdqDHG_AvwAoEL_AFdG2oT</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhao, Qingxiang</creator><creator>Wang, Shuai</creator><creator>Hu, Jian</creator><creator>Liu, Hongbin</creator><creator>Chu, Henry K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3068-6854</orcidid><orcidid>https://orcid.org/0009-0005-6792-9441</orcidid><orcidid>https://orcid.org/0000-0002-4315-7556</orcidid><orcidid>https://orcid.org/0000-0001-7524-5342</orcidid><orcidid>https://orcid.org/0000-0001-7225-6927</orcidid></search><sort><creationdate>20241201</creationdate><title>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</title><author>Zhao, Qingxiang ; Wang, Shuai ; Hu, Jian ; Liu, Hongbin ; Chu, Henry K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-dbf37880693d933e75287f3b6effa88e163b7a42a2451840a0973db9ad2e05f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>Bending</topic><topic>Concurrent self-rotation and positioning</topic><topic>Confined spaces</topic><topic>constrained optimization</topic><topic>Constraint handling</topic><topic>continuum robot</topic><topic>Continuum robots</topic><topic>Control systems design</topic><topic>Deformation effects</topic><topic>Electron tubes</topic><topic>End effectors</topic><topic>Formability</topic><topic>Jacobian-based correction</topic><topic>Kinematics</topic><topic>model predictive control (MPC)</topic><topic>Pneumatic systems</topic><topic>Predictive control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Rotating shafts</topic><topic>Rotation</topic><topic>Shafts</topic><topic>Shape control</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qingxiang</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Liu, Hongbin</creatorcontrib><creatorcontrib>Chu, Henry K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Qingxiang</au><au>Wang, Shuai</au><au>Hu, Jian</au><au>Liu, Hongbin</au><au>Chu, Henry K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>4504</spage><epage>4513</epage><pages>4504-4513</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract><![CDATA[Soft continuum robot arms (CRAs) are potential in narrow confined spaces owing to the high dexterity and compliance, while torsional motion is also anticipated in some scenarios in addition to omnidirectional bending. Most existing designs generate torsional motion either relying on an independent flexible shaft or with only a limited rotation range. This article presented a control scheme for a fully self-rotatable CRA, enabling concurrent rotation along the deformable backbone while positioning the end effector. Shape configuration acts as a bridge between actuation inputs and tip pose, where the bending and rotation motions are decoupled in kinematics. With an optimization-based algorithm and Jacobian-based online correction approach, the position of the tip could be well controlled and could cope with external disturbances. Both simulation and experiments demonstrate the effectiveness of the proposed model. Results indicate that the control scheme is applicable for conventional continuum robot designs and could also perform in-situ rotation, and the motion accuracy reached around <inline-formula><tex-math notation="LaTeX"> \text{6}\,\text{mm}</tex-math></inline-formula> for the <inline-formula><tex-math notation="LaTeX"> \text{120}\,\text{mm}</tex-math></inline-formula> length manipulator. A biopsy sampling experiment also demonstrates its potential in medical applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2024.3378274</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3068-6854</orcidid><orcidid>https://orcid.org/0009-0005-6792-9441</orcidid><orcidid>https://orcid.org/0000-0002-4315-7556</orcidid><orcidid>https://orcid.org/0000-0001-7524-5342</orcidid><orcidid>https://orcid.org/0000-0001-7225-6927</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4504-4513
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2024_3378274
source IEEE Electronic Library (IEL)
subjects Actuation
Algorithms
Bending
Concurrent self-rotation and positioning
Confined spaces
constrained optimization
Constraint handling
continuum robot
Continuum robots
Control systems design
Deformation effects
Electron tubes
End effectors
Formability
Jacobian-based correction
Kinematics
model predictive control (MPC)
Pneumatic systems
Predictive control
Robot arms
Robot control
Robot dynamics
Robots
Rotating shafts
Rotation
Shafts
Shape control
Task analysis
title Controller Design for a Soft Continuum Robot With Concurrent Continuous Rotation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controller%20Design%20for%20a%20Soft%20Continuum%20Robot%20With%20Concurrent%20Continuous%20Rotation&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhao,%20Qingxiang&rft.date=2024-12-01&rft.volume=29&rft.issue=6&rft.spage=4504&rft.epage=4513&rft.pages=4504-4513&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3378274&rft_dat=%3Cproquest_RIE%3E3146586513%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586513&rft_id=info:pmid/&rft_ieee_id=10493047&rfr_iscdi=true