Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning
Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve aut...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-12, Vol.29 (6), p.4377-4388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4388 |
---|---|
container_issue | 6 |
container_start_page | 4377 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Liu, Huashan Ying, Fengkang Jiang, Rongxin Shan, Yinghao Shen, Bo |
description | Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes. |
doi_str_mv | 10.1109/TMECH.2024.3377002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2024_3377002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10485189</ieee_id><sourcerecordid>3146586557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-7235f6bd346f19425aaf93675ebc89a12e37248478a10dec3e9824a9737ab8d83</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N3032WGtrhZZKqaCnkN2dla3bpCZbxW_v1vbgZWZg3ps3_BC6pmRAKcnuVvPxaDpghIkB50oRwk5Qj2aCJoSK19NuJponQnB5ji5iXBNCBCW0h94WeWxt0UAy_PJ1afMG8NLnvq0LPO-qd_i5sc7V7h1Pgt3Atw8f-N5GKHG3ewDY4iXUrvKhgA24Fs_Ahr38Ep1Vtolwdex99DIZr0bTZLZ4fBoNZ0nBhGoTxbis0rzkIq26h5m0tsp4qiTkhc4sZcAVE1oobSkpoeCQaSZspriyuS4176Pbw91t8J87iK1Z-11wXaThVKRSp1KqTsUOqiL4GANUZhvqjQ0_hhKzR2j-EJo9QnNE2JluDqYaAP4ZhJZUZ_wXSE1sxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586557</pqid></control><display><type>article</type><title>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Huashan ; Ying, Fengkang ; Jiang, Rongxin ; Shan, Yinghao ; Shen, Bo</creator><creatorcontrib>Liu, Huashan ; Ying, Fengkang ; Jiang, Rongxin ; Shan, Yinghao ; Shen, Bo</creatorcontrib><description>Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3377002</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Collision avoidance ; Composite obstacle-avoidable reward (COR) ; Deep learning ; deep reinforcement learning (DRL) ; End effectors ; expansive dual-memory sampling (EDS) ; Motion planning ; Obstacle avoidance ; Picture archiving and communication systems ; Planning ; prophet-guided actor–critic (PAC) ; Robot dynamics ; Robot learning ; robotic motion planning ; Robotics ; Robots ; Sampling ; Task analysis ; Training ; Trajectory ; Trajectory planning</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4377-4388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-7235f6bd346f19425aaf93675ebc89a12e37248478a10dec3e9824a9737ab8d83</cites><orcidid>0000-0001-8567-7560 ; 0000-0003-3482-5783 ; 0000-0003-1931-378X ; 0000-0003-1725-1001 ; 0000-0002-8209-4922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10485189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10485189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Huashan</creatorcontrib><creatorcontrib>Ying, Fengkang</creatorcontrib><creatorcontrib>Jiang, Rongxin</creatorcontrib><creatorcontrib>Shan, Yinghao</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><title>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Composite obstacle-avoidable reward (COR)</subject><subject>Deep learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>End effectors</subject><subject>expansive dual-memory sampling (EDS)</subject><subject>Motion planning</subject><subject>Obstacle avoidance</subject><subject>Picture archiving and communication systems</subject><subject>Planning</subject><subject>prophet-guided actor–critic (PAC)</subject><subject>Robot dynamics</subject><subject>Robot learning</subject><subject>robotic motion planning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sampling</subject><subject>Task analysis</subject><subject>Training</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N3032WGtrhZZKqaCnkN2dla3bpCZbxW_v1vbgZWZg3ps3_BC6pmRAKcnuVvPxaDpghIkB50oRwk5Qj2aCJoSK19NuJponQnB5ji5iXBNCBCW0h94WeWxt0UAy_PJ1afMG8NLnvq0LPO-qd_i5sc7V7h1Pgt3Atw8f-N5GKHG3ewDY4iXUrvKhgA24Fs_Ahr38Ep1Vtolwdex99DIZr0bTZLZ4fBoNZ0nBhGoTxbis0rzkIq26h5m0tsp4qiTkhc4sZcAVE1oobSkpoeCQaSZspriyuS4176Pbw91t8J87iK1Z-11wXaThVKRSp1KqTsUOqiL4GANUZhvqjQ0_hhKzR2j-EJo9QnNE2JluDqYaAP4ZhJZUZ_wXSE1sxg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Liu, Huashan</creator><creator>Ying, Fengkang</creator><creator>Jiang, Rongxin</creator><creator>Shan, Yinghao</creator><creator>Shen, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8567-7560</orcidid><orcidid>https://orcid.org/0000-0003-3482-5783</orcidid><orcidid>https://orcid.org/0000-0003-1931-378X</orcidid><orcidid>https://orcid.org/0000-0003-1725-1001</orcidid><orcidid>https://orcid.org/0000-0002-8209-4922</orcidid></search><sort><creationdate>20241201</creationdate><title>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</title><author>Liu, Huashan ; Ying, Fengkang ; Jiang, Rongxin ; Shan, Yinghao ; Shen, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-7235f6bd346f19425aaf93675ebc89a12e37248478a10dec3e9824a9737ab8d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Composite obstacle-avoidable reward (COR)</topic><topic>Deep learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>End effectors</topic><topic>expansive dual-memory sampling (EDS)</topic><topic>Motion planning</topic><topic>Obstacle avoidance</topic><topic>Picture archiving and communication systems</topic><topic>Planning</topic><topic>prophet-guided actor–critic (PAC)</topic><topic>Robot dynamics</topic><topic>Robot learning</topic><topic>robotic motion planning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sampling</topic><topic>Task analysis</topic><topic>Training</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huashan</creatorcontrib><creatorcontrib>Ying, Fengkang</creatorcontrib><creatorcontrib>Jiang, Rongxin</creatorcontrib><creatorcontrib>Shan, Yinghao</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Huashan</au><au>Ying, Fengkang</au><au>Jiang, Rongxin</au><au>Shan, Yinghao</au><au>Shen, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>4377</spage><epage>4388</epage><pages>4377-4388</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2024.3377002</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8567-7560</orcidid><orcidid>https://orcid.org/0000-0003-3482-5783</orcidid><orcidid>https://orcid.org/0000-0003-1931-378X</orcidid><orcidid>https://orcid.org/0000-0003-1725-1001</orcidid><orcidid>https://orcid.org/0000-0002-8209-4922</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4377-4388 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2024_3377002 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Collision avoidance Composite obstacle-avoidable reward (COR) Deep learning deep reinforcement learning (DRL) End effectors expansive dual-memory sampling (EDS) Motion planning Obstacle avoidance Picture archiving and communication systems Planning prophet-guided actor–critic (PAC) Robot dynamics Robot learning robotic motion planning Robotics Robots Sampling Task analysis Training Trajectory Trajectory planning |
title | Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obstacle-Avoidable%20Robotic%20Motion%20Planning%20Framework%20Based%20on%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Huashan&rft.date=2024-12-01&rft.volume=29&rft.issue=6&rft.spage=4377&rft.epage=4388&rft.pages=4377-4388&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3377002&rft_dat=%3Cproquest_RIE%3E3146586557%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586557&rft_id=info:pmid/&rft_ieee_id=10485189&rfr_iscdi=true |