Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning

Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve aut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-12, Vol.29 (6), p.4377-4388
Hauptverfasser: Liu, Huashan, Ying, Fengkang, Jiang, Rongxin, Shan, Yinghao, Shen, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4388
container_issue 6
container_start_page 4377
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Liu, Huashan
Ying, Fengkang
Jiang, Rongxin
Shan, Yinghao
Shen, Bo
description Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.
doi_str_mv 10.1109/TMECH.2024.3377002
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2024_3377002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10485189</ieee_id><sourcerecordid>3146586557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-7235f6bd346f19425aaf93675ebc89a12e37248478a10dec3e9824a9737ab8d83</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N3032WGtrhZZKqaCnkN2dla3bpCZbxW_v1vbgZWZg3ps3_BC6pmRAKcnuVvPxaDpghIkB50oRwk5Qj2aCJoSK19NuJponQnB5ji5iXBNCBCW0h94WeWxt0UAy_PJ1afMG8NLnvq0LPO-qd_i5sc7V7h1Pgt3Atw8f-N5GKHG3ewDY4iXUrvKhgA24Fs_Ahr38Ep1Vtolwdex99DIZr0bTZLZ4fBoNZ0nBhGoTxbis0rzkIq26h5m0tsp4qiTkhc4sZcAVE1oobSkpoeCQaSZspriyuS4176Pbw91t8J87iK1Z-11wXaThVKRSp1KqTsUOqiL4GANUZhvqjQ0_hhKzR2j-EJo9QnNE2JluDqYaAP4ZhJZUZ_wXSE1sxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586557</pqid></control><display><type>article</type><title>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Huashan ; Ying, Fengkang ; Jiang, Rongxin ; Shan, Yinghao ; Shen, Bo</creator><creatorcontrib>Liu, Huashan ; Ying, Fengkang ; Jiang, Rongxin ; Shan, Yinghao ; Shen, Bo</creatorcontrib><description>Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3377002</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Collision avoidance ; Composite obstacle-avoidable reward (COR) ; Deep learning ; deep reinforcement learning (DRL) ; End effectors ; expansive dual-memory sampling (EDS) ; Motion planning ; Obstacle avoidance ; Picture archiving and communication systems ; Planning ; prophet-guided actor–critic (PAC) ; Robot dynamics ; Robot learning ; robotic motion planning ; Robotics ; Robots ; Sampling ; Task analysis ; Training ; Trajectory ; Trajectory planning</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4377-4388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-7235f6bd346f19425aaf93675ebc89a12e37248478a10dec3e9824a9737ab8d83</cites><orcidid>0000-0001-8567-7560 ; 0000-0003-3482-5783 ; 0000-0003-1931-378X ; 0000-0003-1725-1001 ; 0000-0002-8209-4922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10485189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10485189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Huashan</creatorcontrib><creatorcontrib>Ying, Fengkang</creatorcontrib><creatorcontrib>Jiang, Rongxin</creatorcontrib><creatorcontrib>Shan, Yinghao</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><title>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Composite obstacle-avoidable reward (COR)</subject><subject>Deep learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>End effectors</subject><subject>expansive dual-memory sampling (EDS)</subject><subject>Motion planning</subject><subject>Obstacle avoidance</subject><subject>Picture archiving and communication systems</subject><subject>Planning</subject><subject>prophet-guided actor–critic (PAC)</subject><subject>Robot dynamics</subject><subject>Robot learning</subject><subject>robotic motion planning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sampling</subject><subject>Task analysis</subject><subject>Training</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N3032WGtrhZZKqaCnkN2dla3bpCZbxW_v1vbgZWZg3ps3_BC6pmRAKcnuVvPxaDpghIkB50oRwk5Qj2aCJoSK19NuJponQnB5ji5iXBNCBCW0h94WeWxt0UAy_PJ1afMG8NLnvq0LPO-qd_i5sc7V7h1Pgt3Atw8f-N5GKHG3ewDY4iXUrvKhgA24Fs_Ahr38Ep1Vtolwdex99DIZr0bTZLZ4fBoNZ0nBhGoTxbis0rzkIq26h5m0tsp4qiTkhc4sZcAVE1oobSkpoeCQaSZspriyuS4176Pbw91t8J87iK1Z-11wXaThVKRSp1KqTsUOqiL4GANUZhvqjQ0_hhKzR2j-EJo9QnNE2JluDqYaAP4ZhJZUZ_wXSE1sxg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Liu, Huashan</creator><creator>Ying, Fengkang</creator><creator>Jiang, Rongxin</creator><creator>Shan, Yinghao</creator><creator>Shen, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8567-7560</orcidid><orcidid>https://orcid.org/0000-0003-3482-5783</orcidid><orcidid>https://orcid.org/0000-0003-1931-378X</orcidid><orcidid>https://orcid.org/0000-0003-1725-1001</orcidid><orcidid>https://orcid.org/0000-0002-8209-4922</orcidid></search><sort><creationdate>20241201</creationdate><title>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</title><author>Liu, Huashan ; Ying, Fengkang ; Jiang, Rongxin ; Shan, Yinghao ; Shen, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-7235f6bd346f19425aaf93675ebc89a12e37248478a10dec3e9824a9737ab8d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Composite obstacle-avoidable reward (COR)</topic><topic>Deep learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>End effectors</topic><topic>expansive dual-memory sampling (EDS)</topic><topic>Motion planning</topic><topic>Obstacle avoidance</topic><topic>Picture archiving and communication systems</topic><topic>Planning</topic><topic>prophet-guided actor–critic (PAC)</topic><topic>Robot dynamics</topic><topic>Robot learning</topic><topic>robotic motion planning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sampling</topic><topic>Task analysis</topic><topic>Training</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huashan</creatorcontrib><creatorcontrib>Ying, Fengkang</creatorcontrib><creatorcontrib>Jiang, Rongxin</creatorcontrib><creatorcontrib>Shan, Yinghao</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Huashan</au><au>Ying, Fengkang</au><au>Jiang, Rongxin</au><au>Shan, Yinghao</au><au>Shen, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>29</volume><issue>6</issue><spage>4377</spage><epage>4388</epage><pages>4377-4388</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Although robotic trajectory generation has been extensively studied, the motion planning in environments with obstacles still faces some open issues and is yet to be explored. In this article, a universal motion planning framework based on deep reinforcement learning (DRL) is proposed to achieve autonomous obstacle avoidance for robotic tasks. First, a prophet-guided actor-critic structure based on the expert strategy is designed, which can realize prompt replanning when the task scenario changes. Second, an expansive dual-memory sampling mechanism is proposed to efficiently augment expert data from only a few demonstrations. It also improves the training efficiency of DRL algorithms through an increasingly unbiased sampling rule. Third, a composite obstacle-avoidable reward system is designed to achieve collision-free motion for both a robot's end effector and its body/link. It can build a dense reward map, and strike a balance between obstacle avoidance and action exploration. Finally, experimental results have validated the performance of the proposed work in three different scenes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2024.3377002</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8567-7560</orcidid><orcidid>https://orcid.org/0000-0003-3482-5783</orcidid><orcidid>https://orcid.org/0000-0003-1931-378X</orcidid><orcidid>https://orcid.org/0000-0003-1725-1001</orcidid><orcidid>https://orcid.org/0000-0002-8209-4922</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-12, Vol.29 (6), p.4377-4388
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2024_3377002
source IEEE Electronic Library (IEL)
subjects Algorithms
Collision avoidance
Composite obstacle-avoidable reward (COR)
Deep learning
deep reinforcement learning (DRL)
End effectors
expansive dual-memory sampling (EDS)
Motion planning
Obstacle avoidance
Picture archiving and communication systems
Planning
prophet-guided actor–critic (PAC)
Robot dynamics
Robot learning
robotic motion planning
Robotics
Robots
Sampling
Task analysis
Training
Trajectory
Trajectory planning
title Obstacle-Avoidable Robotic Motion Planning Framework Based on Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obstacle-Avoidable%20Robotic%20Motion%20Planning%20Framework%20Based%20on%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Huashan&rft.date=2024-12-01&rft.volume=29&rft.issue=6&rft.spage=4377&rft.epage=4388&rft.pages=4377-4388&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3377002&rft_dat=%3Cproquest_RIE%3E3146586557%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586557&rft_id=info:pmid/&rft_ieee_id=10485189&rfr_iscdi=true