Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots
The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues,...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-10, Vol.29 (5), p.3534-3545 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3545 |
---|---|
container_issue | 5 |
container_start_page | 3534 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | Chen, Yuhan Yao, Shilong Meng, Max Q.-H. Liu, Li |
description | The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR. |
doi_str_mv | 10.1109/TMECH.2023.3348510 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2023_3348510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10403537</ieee_id><sourcerecordid>10_1109_TMECH_2023_3348510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcvIF7kBTqTnjRtvZt1buKGoBO8K2lyipUuGUkm-PZ2bhdenQP_9_8XHyHXnE04Z-XtejWrFpOUpTABEEXG2QkZ8VLwhHHxcTr8rIBECMjOyUUIX4wxwRkfkbb6VJ1FQ9-2Knaqp_eoNrRyNkQ_BJGunMH-jk7pHC36AXge8OhCHHB9SGnrPF2jNc4mD777RrsfiJ3d7Tb01TUuhkty1qo-4NXxjsn742xdLZLly_ypmi4TncoiJq1ooFFcttwUspFQCokmy7Ux0pTaQAF53ug8K1FKBbIQmiks0zwTChquEMYkPexq70Lw2NZb322U_6k5q_em6j9T9d5UfTQ1lG4OpQ4R_xUEgwxy-AWXR2Yy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuhan ; Yao, Shilong ; Meng, Max Q.-H. ; Liu, Li</creator><creatorcontrib>Chen, Yuhan ; Yao, Shilong ; Meng, Max Q.-H. ; Liu, Li</creatorcontrib><description>The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3348510</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D motion ; continuum robots ; Friction ; Gravity ; kinetostatic modeling ; Load modeling ; multisection robots ; Robot kinematics ; Robot motion ; Service robots ; Tendons</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-10, Vol.29 (5), p.3534-3545</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</citedby><cites>FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</cites><orcidid>0000-0003-2698-9569 ; 0000-0001-9796-0291 ; 0000-0002-5255-5898 ; 0000-0003-1807-5492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10403537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10403537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuhan</creatorcontrib><creatorcontrib>Yao, Shilong</creatorcontrib><creatorcontrib>Meng, Max Q.-H.</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><title>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.</description><subject>3-D motion</subject><subject>continuum robots</subject><subject>Friction</subject><subject>Gravity</subject><subject>kinetostatic modeling</subject><subject>Load modeling</subject><subject>multisection robots</subject><subject>Robot kinematics</subject><subject>Robot motion</subject><subject>Service robots</subject><subject>Tendons</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOKcvIF7kBTqTnjRtvZt1buKGoBO8K2lyipUuGUkm-PZ2bhdenQP_9_8XHyHXnE04Z-XtejWrFpOUpTABEEXG2QkZ8VLwhHHxcTr8rIBECMjOyUUIX4wxwRkfkbb6VJ1FQ9-2Knaqp_eoNrRyNkQ_BJGunMH-jk7pHC36AXge8OhCHHB9SGnrPF2jNc4mD777RrsfiJ3d7Tb01TUuhkty1qo-4NXxjsn742xdLZLly_ypmi4TncoiJq1ooFFcttwUspFQCokmy7Ux0pTaQAF53ug8K1FKBbIQmiks0zwTChquEMYkPexq70Lw2NZb322U_6k5q_em6j9T9d5UfTQ1lG4OpQ4R_xUEgwxy-AWXR2Yy</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Yuhan</creator><creator>Yao, Shilong</creator><creator>Meng, Max Q.-H.</creator><creator>Liu, Li</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2698-9569</orcidid><orcidid>https://orcid.org/0000-0001-9796-0291</orcidid><orcidid>https://orcid.org/0000-0002-5255-5898</orcidid><orcidid>https://orcid.org/0000-0003-1807-5492</orcidid></search><sort><creationdate>20241001</creationdate><title>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</title><author>Chen, Yuhan ; Yao, Shilong ; Meng, Max Q.-H. ; Liu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D motion</topic><topic>continuum robots</topic><topic>Friction</topic><topic>Gravity</topic><topic>kinetostatic modeling</topic><topic>Load modeling</topic><topic>multisection robots</topic><topic>Robot kinematics</topic><topic>Robot motion</topic><topic>Service robots</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuhan</creatorcontrib><creatorcontrib>Yao, Shilong</creatorcontrib><creatorcontrib>Meng, Max Q.-H.</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuhan</au><au>Yao, Shilong</au><au>Meng, Max Q.-H.</au><au>Liu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>29</volume><issue>5</issue><spage>3534</spage><epage>3545</epage><pages>3534-3545</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2023.3348510</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2698-9569</orcidid><orcidid>https://orcid.org/0000-0001-9796-0291</orcidid><orcidid>https://orcid.org/0000-0002-5255-5898</orcidid><orcidid>https://orcid.org/0000-0003-1807-5492</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-10, Vol.29 (5), p.3534-3545 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2023_3348510 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D motion continuum robots Friction Gravity kinetostatic modeling Load modeling multisection robots Robot kinematics Robot motion Service robots Tendons |
title | Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chained%20Spatial%20Beam%20Constraint%20Model:%20A%20General%20Kinetostatic%20Model%20for%20Tendon-Driven%20Continuum%20Robots&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Chen,%20Yuhan&rft.date=2024-10-01&rft.volume=29&rft.issue=5&rft.spage=3534&rft.epage=3545&rft.pages=3534-3545&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3348510&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2023_3348510%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10403537&rfr_iscdi=true |