Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots

The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-10, Vol.29 (5), p.3534-3545
Hauptverfasser: Chen, Yuhan, Yao, Shilong, Meng, Max Q.-H., Liu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3545
container_issue 5
container_start_page 3534
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator Chen, Yuhan
Yao, Shilong
Meng, Max Q.-H.
Liu, Li
description The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.
doi_str_mv 10.1109/TMECH.2023.3348510
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2023_3348510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10403537</ieee_id><sourcerecordid>10_1109_TMECH_2023_3348510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcvIF7kBTqTnjRtvZt1buKGoBO8K2lyipUuGUkm-PZ2bhdenQP_9_8XHyHXnE04Z-XtejWrFpOUpTABEEXG2QkZ8VLwhHHxcTr8rIBECMjOyUUIX4wxwRkfkbb6VJ1FQ9-2Knaqp_eoNrRyNkQ_BJGunMH-jk7pHC36AXge8OhCHHB9SGnrPF2jNc4mD777RrsfiJ3d7Tb01TUuhkty1qo-4NXxjsn742xdLZLly_ypmi4TncoiJq1ooFFcttwUspFQCokmy7Ux0pTaQAF53ug8K1FKBbIQmiks0zwTChquEMYkPexq70Lw2NZb322U_6k5q_em6j9T9d5UfTQ1lG4OpQ4R_xUEgwxy-AWXR2Yy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuhan ; Yao, Shilong ; Meng, Max Q.-H. ; Liu, Li</creator><creatorcontrib>Chen, Yuhan ; Yao, Shilong ; Meng, Max Q.-H. ; Liu, Li</creatorcontrib><description>The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3348510</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D motion ; continuum robots ; Friction ; Gravity ; kinetostatic modeling ; Load modeling ; multisection robots ; Robot kinematics ; Robot motion ; Service robots ; Tendons</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-10, Vol.29 (5), p.3534-3545</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</citedby><cites>FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</cites><orcidid>0000-0003-2698-9569 ; 0000-0001-9796-0291 ; 0000-0002-5255-5898 ; 0000-0003-1807-5492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10403537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10403537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuhan</creatorcontrib><creatorcontrib>Yao, Shilong</creatorcontrib><creatorcontrib>Meng, Max Q.-H.</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><title>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.</description><subject>3-D motion</subject><subject>continuum robots</subject><subject>Friction</subject><subject>Gravity</subject><subject>kinetostatic modeling</subject><subject>Load modeling</subject><subject>multisection robots</subject><subject>Robot kinematics</subject><subject>Robot motion</subject><subject>Service robots</subject><subject>Tendons</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOKcvIF7kBTqTnjRtvZt1buKGoBO8K2lyipUuGUkm-PZ2bhdenQP_9_8XHyHXnE04Z-XtejWrFpOUpTABEEXG2QkZ8VLwhHHxcTr8rIBECMjOyUUIX4wxwRkfkbb6VJ1FQ9-2Knaqp_eoNrRyNkQ_BJGunMH-jk7pHC36AXge8OhCHHB9SGnrPF2jNc4mD777RrsfiJ3d7Tb01TUuhkty1qo-4NXxjsn742xdLZLly_ypmi4TncoiJq1ooFFcttwUspFQCokmy7Ux0pTaQAF53ug8K1FKBbIQmiks0zwTChquEMYkPexq70Lw2NZb322U_6k5q_em6j9T9d5UfTQ1lG4OpQ4R_xUEgwxy-AWXR2Yy</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Yuhan</creator><creator>Yao, Shilong</creator><creator>Meng, Max Q.-H.</creator><creator>Liu, Li</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2698-9569</orcidid><orcidid>https://orcid.org/0000-0001-9796-0291</orcidid><orcidid>https://orcid.org/0000-0002-5255-5898</orcidid><orcidid>https://orcid.org/0000-0003-1807-5492</orcidid></search><sort><creationdate>20241001</creationdate><title>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</title><author>Chen, Yuhan ; Yao, Shilong ; Meng, Max Q.-H. ; Liu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f4b3ba16f1d86b63946ed57cdd6d9cd38377bc759e66a3684c0ae92754a3b1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D motion</topic><topic>continuum robots</topic><topic>Friction</topic><topic>Gravity</topic><topic>kinetostatic modeling</topic><topic>Load modeling</topic><topic>multisection robots</topic><topic>Robot kinematics</topic><topic>Robot motion</topic><topic>Service robots</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuhan</creatorcontrib><creatorcontrib>Yao, Shilong</creatorcontrib><creatorcontrib>Meng, Max Q.-H.</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuhan</au><au>Yao, Shilong</au><au>Meng, Max Q.-H.</au><au>Liu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>29</volume><issue>5</issue><spage>3534</spage><epage>3545</epage><pages>3534-3545</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The profile estimation for continuum robots is a crucial problem concerning automatically controlling robots. The conventional method is based on the Cosserat rod theory, which is limited by the dependence of the convergence on the initial guess and computational complexity. To tackle these issues, this article proposes a general kinetostatic model to estimate the profile of the tendon-driven continuum robot (TDCR). We first abstract the backbone of the TDCR as an Euler-Bernoulli beam and then derive the spatial beam constraint model of a circular cross-section beam without considering torsion and shear. Next, taking a single-section TDCR as an example, we provide comprehensive modeling, considering the driving tendon tensions, friction, gravity, and external forces. Subsequently, an algorithm based on the chained spatial beam constraint model is proposed to estimate the robot's profile. The method can be generalized to the TDCR with different configurations. Simulations demonstrate the accuracy, computational efficiency, and computational success rate of our method, as well as its advantages over the state-of-the-art. Real-world experiments have also been performed to validate the effectiveness of our method with three different configurations of the TDCR.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2023.3348510</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2698-9569</orcidid><orcidid>https://orcid.org/0000-0001-9796-0291</orcidid><orcidid>https://orcid.org/0000-0002-5255-5898</orcidid><orcidid>https://orcid.org/0000-0003-1807-5492</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-10, Vol.29 (5), p.3534-3545
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2023_3348510
source IEEE Electronic Library (IEL)
subjects 3-D motion
continuum robots
Friction
Gravity
kinetostatic modeling
Load modeling
multisection robots
Robot kinematics
Robot motion
Service robots
Tendons
title Chained Spatial Beam Constraint Model: A General Kinetostatic Model for Tendon-Driven Continuum Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chained%20Spatial%20Beam%20Constraint%20Model:%20A%20General%20Kinetostatic%20Model%20for%20Tendon-Driven%20Continuum%20Robots&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Chen,%20Yuhan&rft.date=2024-10-01&rft.volume=29&rft.issue=5&rft.spage=3534&rft.epage=3545&rft.pages=3534-3545&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3348510&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2023_3348510%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10403537&rfr_iscdi=true