Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger
A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given in...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2021-08, Vol.26 (4), p.1828-1836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1836 |
---|---|
container_issue | 4 |
container_start_page | 1828 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 26 |
creator | Liu, Chih-Hsing Chung, Fu-Ming Ho, Yuan-Ping |
description | A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects. |
doi_str_mv | 10.1109/TMECH.2021.3077947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2021_3077947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9425015</ieee_id><sourcerecordid>2562323498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1snX7vJUfphhUp7qOAtxN2kpLSbNdke6q83teJcZl543xnmQeiewIgQUE_rt-l4PqJAyYhBVSleXaABUZwUQPjHZZ5BsoJzJq7RTUpbAOAEyACt1qELu7A54mXX-73_Nr0PLXYh4olNftPi4LDBbFKsom972-BxaFNv2r6YhVjbLPfdzmeNZ77d2HiLrpzZJXv314fofTZdj-fFYvnyOn5eFDWTsi9URaGkDZWupMI1nBpXW1mXDUDFapoLnIWGE-lA5Xc-VW2ElU4QZrhlgg3R43lvF8PXwaZeb8MhtvmkpqKkjDKuZHbRs6uOIaVone6i35t41AT0iZz-JadP5PQfuRx6OIe8tfY_oDgVQAT7ASt3aQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562323498</pqid></control><display><type>article</type><title>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Chih-Hsing ; Chung, Fu-Ming ; Ho, Yuan-Ping</creator><creatorcontrib>Liu, Chih-Hsing ; Chung, Fu-Ming ; Ho, Yuan-Ping</creatorcontrib><description>A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2021.3077947</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compliant finger ; compliant gripper ; compliant mechanism ; constant-force mechanism ; Deformation effects ; Design optimization ; Displacement ; Elastomers ; Feedback control ; Fingers ; Finite element analysis ; Force ; Grasping (robotics) ; Manufacturing processes ; Optimization ; Pneumatics ; soft robot ; Springs ; Three dimensional printing ; Topology ; Topology optimization</subject><ispartof>IEEE/ASME transactions on mechatronics, 2021-08, Vol.26 (4), p.1828-1836</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</citedby><cites>FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</cites><orcidid>0000-0001-8728-8091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9425015$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Liu, Chih-Hsing</creatorcontrib><creatorcontrib>Chung, Fu-Ming</creatorcontrib><creatorcontrib>Ho, Yuan-Ping</creatorcontrib><title>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.</description><subject>Compliant finger</subject><subject>compliant gripper</subject><subject>compliant mechanism</subject><subject>constant-force mechanism</subject><subject>Deformation effects</subject><subject>Design optimization</subject><subject>Displacement</subject><subject>Elastomers</subject><subject>Feedback control</subject><subject>Fingers</subject><subject>Finite element analysis</subject><subject>Force</subject><subject>Grasping (robotics)</subject><subject>Manufacturing processes</subject><subject>Optimization</subject><subject>Pneumatics</subject><subject>soft robot</subject><subject>Springs</subject><subject>Three dimensional printing</subject><subject>Topology</subject><subject>Topology optimization</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1snX7vJUfphhUp7qOAtxN2kpLSbNdke6q83teJcZl543xnmQeiewIgQUE_rt-l4PqJAyYhBVSleXaABUZwUQPjHZZ5BsoJzJq7RTUpbAOAEyACt1qELu7A54mXX-73_Nr0PLXYh4olNftPi4LDBbFKsom972-BxaFNv2r6YhVjbLPfdzmeNZ77d2HiLrpzZJXv314fofTZdj-fFYvnyOn5eFDWTsi9URaGkDZWupMI1nBpXW1mXDUDFapoLnIWGE-lA5Xc-VW2ElU4QZrhlgg3R43lvF8PXwaZeb8MhtvmkpqKkjDKuZHbRs6uOIaVone6i35t41AT0iZz-JadP5PQfuRx6OIe8tfY_oDgVQAT7ASt3aQQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Liu, Chih-Hsing</creator><creator>Chung, Fu-Ming</creator><creator>Ho, Yuan-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8728-8091</orcidid></search><sort><creationdate>202108</creationdate><title>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</title><author>Liu, Chih-Hsing ; Chung, Fu-Ming ; Ho, Yuan-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compliant finger</topic><topic>compliant gripper</topic><topic>compliant mechanism</topic><topic>constant-force mechanism</topic><topic>Deformation effects</topic><topic>Design optimization</topic><topic>Displacement</topic><topic>Elastomers</topic><topic>Feedback control</topic><topic>Fingers</topic><topic>Finite element analysis</topic><topic>Force</topic><topic>Grasping (robotics)</topic><topic>Manufacturing processes</topic><topic>Optimization</topic><topic>Pneumatics</topic><topic>soft robot</topic><topic>Springs</topic><topic>Three dimensional printing</topic><topic>Topology</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chih-Hsing</creatorcontrib><creatorcontrib>Chung, Fu-Ming</creatorcontrib><creatorcontrib>Ho, Yuan-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chih-Hsing</au><au>Chung, Fu-Ming</au><au>Ho, Yuan-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2021-08</date><risdate>2021</risdate><volume>26</volume><issue>4</issue><spage>1828</spage><epage>1836</epage><pages>1828-1836</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2021.3077947</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8728-8091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2021-08, Vol.26 (4), p.1828-1836 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2021_3077947 |
source | IEEE Electronic Library (IEL) |
subjects | Compliant finger compliant gripper compliant mechanism constant-force mechanism Deformation effects Design optimization Displacement Elastomers Feedback control Fingers Finite element analysis Force Grasping (robotics) Manufacturing processes Optimization Pneumatics soft robot Springs Three dimensional printing Topology Topology optimization |
title | Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Optimization%20for%20Design%20of%20a%203D-Printed%20Constant-Force%20Compliant%20Finger&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Chih-Hsing&rft.date=2021-08&rft.volume=26&rft.issue=4&rft.spage=1828&rft.epage=1836&rft.pages=1828-1836&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2021.3077947&rft_dat=%3Cproquest_cross%3E2562323498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562323498&rft_id=info:pmid/&rft_ieee_id=9425015&rfr_iscdi=true |