Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger

A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2021-08, Vol.26 (4), p.1828-1836
Hauptverfasser: Liu, Chih-Hsing, Chung, Fu-Ming, Ho, Yuan-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1836
container_issue 4
container_start_page 1828
container_title IEEE/ASME transactions on mechatronics
container_volume 26
creator Liu, Chih-Hsing
Chung, Fu-Ming
Ho, Yuan-Ping
description A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.
doi_str_mv 10.1109/TMECH.2021.3077947
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2021_3077947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9425015</ieee_id><sourcerecordid>2562323498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1snX7vJUfphhUp7qOAtxN2kpLSbNdke6q83teJcZl543xnmQeiewIgQUE_rt-l4PqJAyYhBVSleXaABUZwUQPjHZZ5BsoJzJq7RTUpbAOAEyACt1qELu7A54mXX-73_Nr0PLXYh4olNftPi4LDBbFKsom972-BxaFNv2r6YhVjbLPfdzmeNZ77d2HiLrpzZJXv314fofTZdj-fFYvnyOn5eFDWTsi9URaGkDZWupMI1nBpXW1mXDUDFapoLnIWGE-lA5Xc-VW2ElU4QZrhlgg3R43lvF8PXwaZeb8MhtvmkpqKkjDKuZHbRs6uOIaVone6i35t41AT0iZz-JadP5PQfuRx6OIe8tfY_oDgVQAT7ASt3aQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562323498</pqid></control><display><type>article</type><title>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Chih-Hsing ; Chung, Fu-Ming ; Ho, Yuan-Ping</creator><creatorcontrib>Liu, Chih-Hsing ; Chung, Fu-Ming ; Ho, Yuan-Ping</creatorcontrib><description>A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2021.3077947</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compliant finger ; compliant gripper ; compliant mechanism ; constant-force mechanism ; Deformation effects ; Design optimization ; Displacement ; Elastomers ; Feedback control ; Fingers ; Finite element analysis ; Force ; Grasping (robotics) ; Manufacturing processes ; Optimization ; Pneumatics ; soft robot ; Springs ; Three dimensional printing ; Topology ; Topology optimization</subject><ispartof>IEEE/ASME transactions on mechatronics, 2021-08, Vol.26 (4), p.1828-1836</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</citedby><cites>FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</cites><orcidid>0000-0001-8728-8091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9425015$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Liu, Chih-Hsing</creatorcontrib><creatorcontrib>Chung, Fu-Ming</creatorcontrib><creatorcontrib>Ho, Yuan-Ping</creatorcontrib><title>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.</description><subject>Compliant finger</subject><subject>compliant gripper</subject><subject>compliant mechanism</subject><subject>constant-force mechanism</subject><subject>Deformation effects</subject><subject>Design optimization</subject><subject>Displacement</subject><subject>Elastomers</subject><subject>Feedback control</subject><subject>Fingers</subject><subject>Finite element analysis</subject><subject>Force</subject><subject>Grasping (robotics)</subject><subject>Manufacturing processes</subject><subject>Optimization</subject><subject>Pneumatics</subject><subject>soft robot</subject><subject>Springs</subject><subject>Three dimensional printing</subject><subject>Topology</subject><subject>Topology optimization</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1snX7vJUfphhUp7qOAtxN2kpLSbNdke6q83teJcZl543xnmQeiewIgQUE_rt-l4PqJAyYhBVSleXaABUZwUQPjHZZ5BsoJzJq7RTUpbAOAEyACt1qELu7A54mXX-73_Nr0PLXYh4olNftPi4LDBbFKsom972-BxaFNv2r6YhVjbLPfdzmeNZ77d2HiLrpzZJXv314fofTZdj-fFYvnyOn5eFDWTsi9URaGkDZWupMI1nBpXW1mXDUDFapoLnIWGE-lA5Xc-VW2ElU4QZrhlgg3R43lvF8PXwaZeb8MhtvmkpqKkjDKuZHbRs6uOIaVone6i35t41AT0iZz-JadP5PQfuRx6OIe8tfY_oDgVQAT7ASt3aQQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Liu, Chih-Hsing</creator><creator>Chung, Fu-Ming</creator><creator>Ho, Yuan-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8728-8091</orcidid></search><sort><creationdate>202108</creationdate><title>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</title><author>Liu, Chih-Hsing ; Chung, Fu-Ming ; Ho, Yuan-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-972062d28f625fd42afce8c6d0073c22220fe0d418f09947b9ca5e8f513a4e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compliant finger</topic><topic>compliant gripper</topic><topic>compliant mechanism</topic><topic>constant-force mechanism</topic><topic>Deformation effects</topic><topic>Design optimization</topic><topic>Displacement</topic><topic>Elastomers</topic><topic>Feedback control</topic><topic>Fingers</topic><topic>Finite element analysis</topic><topic>Force</topic><topic>Grasping (robotics)</topic><topic>Manufacturing processes</topic><topic>Optimization</topic><topic>Pneumatics</topic><topic>soft robot</topic><topic>Springs</topic><topic>Three dimensional printing</topic><topic>Topology</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chih-Hsing</creatorcontrib><creatorcontrib>Chung, Fu-Ming</creatorcontrib><creatorcontrib>Ho, Yuan-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chih-Hsing</au><au>Chung, Fu-Ming</au><au>Ho, Yuan-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2021-08</date><risdate>2021</risdate><volume>26</volume><issue>4</issue><spage>1828</spage><epage>1836</epage><pages>1828-1836</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A compliant constant-force mechanism is a passive force regulation device that can generate a nearly constant output force over a range of input or output displacements while without the use of sensors and feedback control. In topology synthesis of a compliant constant-force mechanism for a given input displacement range, the constant output force can be achieved by maintaining the output displacement to be nearly a same value while the input displacement increases. In order to further control the desired output displacement for the compliant constant-force mechanism before contacting the object, this article introduces a new composite objective function that can consider both the output force (with contact) and the output displacement (without contact) of the synthesized compliant mechanism. The sensitivity for the proposed objective function with respect to the element density is derived while considering the effect of nonlinearity in the large deformation condition. The proposed topology optimization method is used to design an innovative constant-force compliant finger, and its prototype is manufactured by 3-D printing using a flexible thermoplastic elastomer. The experimental results show the developed constant-force compliant finger can provide a nearly constant output force of 41.9 N over the input displacement ranging from 15 to 30 mm while the maximum and average force variations within the constant-force range are 2.2% and 0.9%, respectively. In addition, the developed constant-force compliant finger is used to design a three-fingered constant-force compliant gripper that can be used in robotic grasping of fragile objects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2021.3077947</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8728-8091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2021-08, Vol.26 (4), p.1828-1836
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2021_3077947
source IEEE Electronic Library (IEL)
subjects Compliant finger
compliant gripper
compliant mechanism
constant-force mechanism
Deformation effects
Design optimization
Displacement
Elastomers
Feedback control
Fingers
Finite element analysis
Force
Grasping (robotics)
Manufacturing processes
Optimization
Pneumatics
soft robot
Springs
Three dimensional printing
Topology
Topology optimization
title Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Optimization%20for%20Design%20of%20a%203D-Printed%20Constant-Force%20Compliant%20Finger&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Chih-Hsing&rft.date=2021-08&rft.volume=26&rft.issue=4&rft.spage=1828&rft.epage=1836&rft.pages=1828-1836&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2021.3077947&rft_dat=%3Cproquest_cross%3E2562323498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562323498&rft_id=info:pmid/&rft_ieee_id=9425015&rfr_iscdi=true