Globally Optimal Symbolic Hand-Eye Calibration

Hand-eye calibration (HEC) is a kernel technique guaranteeing precision industrial visual servoing and robotic grasping. Extensive studies have been conducted to various closed-form and iterative solutions to HEC problems using different pose parameterizations. However, these approaches are either s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2021-06, Vol.26 (3), p.1369-1379
Hauptverfasser: Wu, Jin, Liu, Ming, Zhu, Yilong, Zou, Zuhao, Dai, Ming-Zhe, Zhang, Chengxi, Jiang, Yi, Li, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1379
container_issue 3
container_start_page 1369
container_title IEEE/ASME transactions on mechatronics
container_volume 26
creator Wu, Jin
Liu, Ming
Zhu, Yilong
Zou, Zuhao
Dai, Ming-Zhe
Zhang, Chengxi
Jiang, Yi
Li, Chong
description Hand-eye calibration (HEC) is a kernel technique guaranteeing precision industrial visual servoing and robotic grasping. Extensive studies have been conducted to various closed-form and iterative solutions to HEC problems using different pose parameterizations. However, these approaches are either sensitive to input noise or time-consuming for implementation. This article provides a new perspective on a deterministic solution to two major branches of HEC problems of forms \boldsymbol {AX} = \boldsymbol {XB} and \boldsymbol {AX} = \boldsymbol {YB}. We use symbolic methods to derive a globally optimal solution. Different from representatives based on optimization, this method is not only the most accurate against others but also with repeatability of 100%. Experiments via industrial robotic manipulator verify the superiority of the proposed algorithm.
doi_str_mv 10.1109/TMECH.2020.3019306
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2020_3019306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177352</ieee_id><sourcerecordid>2553591471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1972a1e550f6dd5ccfffccb620a0276e219494723bdf4c55ac80fcc4ccf427a83</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqXwB2CJxJxw54-4HlFUWqSiDhSJzXIcW0rlNsVJh_x7XFox3Q3Pex8PIY8IBSKol83HvFoWFCgUDFAxKK_IBBXHHJB_X6ceZiznnIlbctf3WwDgCDghxSJ0tQlhzNaHod2ZkH2Ou7oLrc2WZt_k89FllQltHc3Qdvt7cuNN6N3DpU7J19t8Uy3z1XrxXr2ucsuYGnJUkhp0QoAvm0ZY6723ti4pGKCydDSdprikrG48t0IYO4ME8ARyKs2MTcnzee4hdj9H1w962x3jPq3UVAgmFHKJiaJnysau76Pz-hDTD3HUCPrkRf950Scv-uIlhZ7OodY59x9QKCUTlP0CEQZdoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553591471</pqid></control><display><type>article</type><title>Globally Optimal Symbolic Hand-Eye Calibration</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Wu, Jin ; Liu, Ming ; Zhu, Yilong ; Zou, Zuhao ; Dai, Ming-Zhe ; Zhang, Chengxi ; Jiang, Yi ; Li, Chong</creator><creatorcontrib>Wu, Jin ; Liu, Ming ; Zhu, Yilong ; Zou, Zuhao ; Dai, Ming-Zhe ; Zhang, Chengxi ; Jiang, Yi ; Li, Chong</creatorcontrib><description><![CDATA[Hand-eye calibration (HEC) is a kernel technique guaranteeing precision industrial visual servoing and robotic grasping. Extensive studies have been conducted to various closed-form and iterative solutions to HEC problems using different pose parameterizations. However, these approaches are either sensitive to input noise or time-consuming for implementation. This article provides a new perspective on a deterministic solution to two major branches of HEC problems of forms <inline-formula><tex-math notation="LaTeX">\boldsymbol {AX} = \boldsymbol {XB}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol {AX} = \boldsymbol {YB}</tex-math></inline-formula>. We use symbolic methods to derive a globally optimal solution. Different from representatives based on optimization, this method is not only the most accurate against others but also with repeatability of 100%. Experiments via industrial robotic manipulator verify the superiority of the proposed algorithm.]]></description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.3019306</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Calibration ; Global solution ; Grasping (robotics) ; hand-eye calibration (HEC) ; IEEE transactions ; Industrial robots ; Iterative methods ; Iterative solution ; Jacobian matrices ; Noise sensitivity ; Optimization ; Quaternions ; Robot arms ; robotic manipulator ; robotic perception ; Service robots ; symbolic computation ; Visual control</subject><ispartof>IEEE/ASME transactions on mechatronics, 2021-06, Vol.26 (3), p.1369-1379</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1972a1e550f6dd5ccfffccb620a0276e219494723bdf4c55ac80fcc4ccf427a83</citedby><cites>FETCH-LOGICAL-c339t-1972a1e550f6dd5ccfffccb620a0276e219494723bdf4c55ac80fcc4ccf427a83</cites><orcidid>0000-0002-1742-0963 ; 0000-0002-3130-6497 ; 0000-0002-3399-916X ; 0000-0002-4500-238X ; 0000-0001-5930-4170 ; 0000-0001-8927-0119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177352$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9177352$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhu, Yilong</creatorcontrib><creatorcontrib>Zou, Zuhao</creatorcontrib><creatorcontrib>Dai, Ming-Zhe</creatorcontrib><creatorcontrib>Zhang, Chengxi</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><title>Globally Optimal Symbolic Hand-Eye Calibration</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description><![CDATA[Hand-eye calibration (HEC) is a kernel technique guaranteeing precision industrial visual servoing and robotic grasping. Extensive studies have been conducted to various closed-form and iterative solutions to HEC problems using different pose parameterizations. However, these approaches are either sensitive to input noise or time-consuming for implementation. This article provides a new perspective on a deterministic solution to two major branches of HEC problems of forms <inline-formula><tex-math notation="LaTeX">\boldsymbol {AX} = \boldsymbol {XB}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol {AX} = \boldsymbol {YB}</tex-math></inline-formula>. We use symbolic methods to derive a globally optimal solution. Different from representatives based on optimization, this method is not only the most accurate against others but also with repeatability of 100%. Experiments via industrial robotic manipulator verify the superiority of the proposed algorithm.]]></description><subject>Algorithms</subject><subject>Calibration</subject><subject>Global solution</subject><subject>Grasping (robotics)</subject><subject>hand-eye calibration (HEC)</subject><subject>IEEE transactions</subject><subject>Industrial robots</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Jacobian matrices</subject><subject>Noise sensitivity</subject><subject>Optimization</subject><subject>Quaternions</subject><subject>Robot arms</subject><subject>robotic manipulator</subject><subject>robotic perception</subject><subject>Service robots</subject><subject>symbolic computation</subject><subject>Visual control</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqXwB2CJxJxw54-4HlFUWqSiDhSJzXIcW0rlNsVJh_x7XFox3Q3Pex8PIY8IBSKol83HvFoWFCgUDFAxKK_IBBXHHJB_X6ceZiznnIlbctf3WwDgCDghxSJ0tQlhzNaHod2ZkH2Ou7oLrc2WZt_k89FllQltHc3Qdvt7cuNN6N3DpU7J19t8Uy3z1XrxXr2ucsuYGnJUkhp0QoAvm0ZY6723ti4pGKCydDSdprikrG48t0IYO4ME8ARyKs2MTcnzee4hdj9H1w962x3jPq3UVAgmFHKJiaJnysau76Pz-hDTD3HUCPrkRf950Scv-uIlhZ7OodY59x9QKCUTlP0CEQZdoQ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Wu, Jin</creator><creator>Liu, Ming</creator><creator>Zhu, Yilong</creator><creator>Zou, Zuhao</creator><creator>Dai, Ming-Zhe</creator><creator>Zhang, Chengxi</creator><creator>Jiang, Yi</creator><creator>Li, Chong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1742-0963</orcidid><orcidid>https://orcid.org/0000-0002-3130-6497</orcidid><orcidid>https://orcid.org/0000-0002-3399-916X</orcidid><orcidid>https://orcid.org/0000-0002-4500-238X</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid><orcidid>https://orcid.org/0000-0001-8927-0119</orcidid></search><sort><creationdate>202106</creationdate><title>Globally Optimal Symbolic Hand-Eye Calibration</title><author>Wu, Jin ; Liu, Ming ; Zhu, Yilong ; Zou, Zuhao ; Dai, Ming-Zhe ; Zhang, Chengxi ; Jiang, Yi ; Li, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1972a1e550f6dd5ccfffccb620a0276e219494723bdf4c55ac80fcc4ccf427a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Global solution</topic><topic>Grasping (robotics)</topic><topic>hand-eye calibration (HEC)</topic><topic>IEEE transactions</topic><topic>Industrial robots</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Jacobian matrices</topic><topic>Noise sensitivity</topic><topic>Optimization</topic><topic>Quaternions</topic><topic>Robot arms</topic><topic>robotic manipulator</topic><topic>robotic perception</topic><topic>Service robots</topic><topic>symbolic computation</topic><topic>Visual control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhu, Yilong</creatorcontrib><creatorcontrib>Zou, Zuhao</creatorcontrib><creatorcontrib>Dai, Ming-Zhe</creatorcontrib><creatorcontrib>Zhang, Chengxi</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Jin</au><au>Liu, Ming</au><au>Zhu, Yilong</au><au>Zou, Zuhao</au><au>Dai, Ming-Zhe</au><au>Zhang, Chengxi</au><au>Jiang, Yi</au><au>Li, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Globally Optimal Symbolic Hand-Eye Calibration</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2021-06</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>1369</spage><epage>1379</epage><pages>1369-1379</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract><![CDATA[Hand-eye calibration (HEC) is a kernel technique guaranteeing precision industrial visual servoing and robotic grasping. Extensive studies have been conducted to various closed-form and iterative solutions to HEC problems using different pose parameterizations. However, these approaches are either sensitive to input noise or time-consuming for implementation. This article provides a new perspective on a deterministic solution to two major branches of HEC problems of forms <inline-formula><tex-math notation="LaTeX">\boldsymbol {AX} = \boldsymbol {XB}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\boldsymbol {AX} = \boldsymbol {YB}</tex-math></inline-formula>. We use symbolic methods to derive a globally optimal solution. Different from representatives based on optimization, this method is not only the most accurate against others but also with repeatability of 100%. Experiments via industrial robotic manipulator verify the superiority of the proposed algorithm.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.3019306</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1742-0963</orcidid><orcidid>https://orcid.org/0000-0002-3130-6497</orcidid><orcidid>https://orcid.org/0000-0002-3399-916X</orcidid><orcidid>https://orcid.org/0000-0002-4500-238X</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid><orcidid>https://orcid.org/0000-0001-8927-0119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2021-06, Vol.26 (3), p.1369-1379
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2020_3019306
source IEEE/IET Electronic Library (IEL)
subjects Algorithms
Calibration
Global solution
Grasping (robotics)
hand-eye calibration (HEC)
IEEE transactions
Industrial robots
Iterative methods
Iterative solution
Jacobian matrices
Noise sensitivity
Optimization
Quaternions
Robot arms
robotic manipulator
robotic perception
Service robots
symbolic computation
Visual control
title Globally Optimal Symbolic Hand-Eye Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Globally%20Optimal%20Symbolic%20Hand-Eye%20Calibration&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Wu,%20Jin&rft.date=2021-06&rft.volume=26&rft.issue=3&rft.spage=1369&rft.epage=1379&rft.pages=1369-1379&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.3019306&rft_dat=%3Cproquest_RIE%3E2553591471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553591471&rft_id=info:pmid/&rft_ieee_id=9177352&rfr_iscdi=true