Practical Terminal Sliding Mode Control of Nonlinear Uncertain Active Suspension Systems With Adaptive Disturbance Observer
In this article, a practical terminal sliding mode control (TSMC) framework based on an adaptive disturbance observer (ADO) is presented for the active suspension systems. The proposed controller requires no exact feedback linearization about the suspension dynamics. The ADO is designed to estimate...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2021-04, Vol.26 (2), p.789-797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 797 |
---|---|
container_issue | 2 |
container_start_page | 789 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 26 |
creator | Wang, Gang Chadli, Mohammed Basin, Michael V. |
description | In this article, a practical terminal sliding mode control (TSMC) framework based on an adaptive disturbance observer (ADO) is presented for the active suspension systems. The proposed controller requires no exact feedback linearization about the suspension dynamics. The ADO is designed to estimate the unknown dynamics and control errors produced by the motor actuator. To guarantee the fast convergence and high control accuracy, a TSMC-type surface and a continuous sliding mode reaching law are designed. The finite-time convergence of the controlled system is guaranteed based on the Lyapunov stability theory. To evaluate the performance improvement of the proposed control framework, a detailed comparison with the active disturbance rejection method has been provided. Finally, a practical hardware-in-loop experiment is implemented to validate the effectiveness of the proposed control scheme. |
doi_str_mv | 10.1109/TMECH.2020.3000122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2020_3000122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9109277</ieee_id><sourcerecordid>2515749193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-2fe4f6c05c29b0609b49ede799292ef5e92956d1f2e554fdf742c830530fe83b3</originalsourceid><addsrcrecordid>eNo9kU1vGjEQhldVKzUl_QPpxVJPPSwZf7H4iCgtkUioBFFzs7y748bRYlN7QUL58zEBcZpXo-eZw7xFcUNhSCmo2_X9bDofMmAw5ABAGftQXFElaAlUPH3MGca8FILLz8WXlF4yIyjQq-L1TzRN7xrTkTXGjfM5rDrXOv-P3IcWyTT4PoaOBEsegu-cRxPJo28w9sZ5MsnyHslql7bokwuerA6px00if13_TCat2b4DP13qd7E2WSTLOmHcY7wuPlnTJfx6noPi8ddsPZ2Xi-Xvu-lkUTacqb5kFoUdNSAbpmoYgaqFwhYrpZhiaCXmKUcttQylFLa1lWDNmIPkYHHMaz4ofpzuPptOb6PbmHjQwTg9nyz0cQdcCso539PMfj-x2xj-7zD1-iXsYv5K0kxSWQlFFc8UO1FNDClFtJezFPSxEP1eiD4Wos-FZOnbSXKIeBFUpllV8TcEWIeT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515749193</pqid></control><display><type>article</type><title>Practical Terminal Sliding Mode Control of Nonlinear Uncertain Active Suspension Systems With Adaptive Disturbance Observer</title><source>IEEE/IET Electronic Library</source><creator>Wang, Gang ; Chadli, Mohammed ; Basin, Michael V.</creator><creatorcontrib>Wang, Gang ; Chadli, Mohammed ; Basin, Michael V.</creatorcontrib><description>In this article, a practical terminal sliding mode control (TSMC) framework based on an adaptive disturbance observer (ADO) is presented for the active suspension systems. The proposed controller requires no exact feedback linearization about the suspension dynamics. The ADO is designed to estimate the unknown dynamics and control errors produced by the motor actuator. To guarantee the fast convergence and high control accuracy, a TSMC-type surface and a continuous sliding mode reaching law are designed. The finite-time convergence of the controlled system is guaranteed based on the Lyapunov stability theory. To evaluate the performance improvement of the proposed control framework, a detailed comparison with the active disturbance rejection method has been provided. Finally, a practical hardware-in-loop experiment is implemented to validate the effectiveness of the proposed control scheme.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.3000122</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active suspension systems ; Actuators ; Adaptive control ; adaptive disturbance observer (ADO) ; Automatic ; Control stability ; Convergence ; Disturbance observers ; disturbance suppression ; Engineering Sciences ; Feedback linearization ; Nonlinear control ; Roads ; Sliding mode control ; Stability analysis ; Suspension systems ; Suspensions (mechanical systems) ; terminal sliding mode control (TSMC) ; Tires</subject><ispartof>IEEE/ASME transactions on mechatronics, 2021-04, Vol.26 (2), p.789-797</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-2fe4f6c05c29b0609b49ede799292ef5e92956d1f2e554fdf742c830530fe83b3</citedby><cites>FETCH-LOGICAL-c329t-2fe4f6c05c29b0609b49ede799292ef5e92956d1f2e554fdf742c830530fe83b3</cites><orcidid>0000-0002-0140-5187 ; 0000-0002-7274-4303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9109277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9109277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03541333$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chadli, Mohammed</creatorcontrib><creatorcontrib>Basin, Michael V.</creatorcontrib><title>Practical Terminal Sliding Mode Control of Nonlinear Uncertain Active Suspension Systems With Adaptive Disturbance Observer</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In this article, a practical terminal sliding mode control (TSMC) framework based on an adaptive disturbance observer (ADO) is presented for the active suspension systems. The proposed controller requires no exact feedback linearization about the suspension dynamics. The ADO is designed to estimate the unknown dynamics and control errors produced by the motor actuator. To guarantee the fast convergence and high control accuracy, a TSMC-type surface and a continuous sliding mode reaching law are designed. The finite-time convergence of the controlled system is guaranteed based on the Lyapunov stability theory. To evaluate the performance improvement of the proposed control framework, a detailed comparison with the active disturbance rejection method has been provided. Finally, a practical hardware-in-loop experiment is implemented to validate the effectiveness of the proposed control scheme.</description><subject>Active control</subject><subject>Active suspension systems</subject><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive disturbance observer (ADO)</subject><subject>Automatic</subject><subject>Control stability</subject><subject>Convergence</subject><subject>Disturbance observers</subject><subject>disturbance suppression</subject><subject>Engineering Sciences</subject><subject>Feedback linearization</subject><subject>Nonlinear control</subject><subject>Roads</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Suspension systems</subject><subject>Suspensions (mechanical systems)</subject><subject>terminal sliding mode control (TSMC)</subject><subject>Tires</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1vGjEQhldVKzUl_QPpxVJPPSwZf7H4iCgtkUioBFFzs7y748bRYlN7QUL58zEBcZpXo-eZw7xFcUNhSCmo2_X9bDofMmAw5ABAGftQXFElaAlUPH3MGca8FILLz8WXlF4yIyjQq-L1TzRN7xrTkTXGjfM5rDrXOv-P3IcWyTT4PoaOBEsegu-cRxPJo28w9sZ5MsnyHslql7bokwuerA6px00if13_TCat2b4DP13qd7E2WSTLOmHcY7wuPlnTJfx6noPi8ddsPZ2Xi-Xvu-lkUTacqb5kFoUdNSAbpmoYgaqFwhYrpZhiaCXmKUcttQylFLa1lWDNmIPkYHHMaz4ofpzuPptOb6PbmHjQwTg9nyz0cQdcCso539PMfj-x2xj-7zD1-iXsYv5K0kxSWQlFFc8UO1FNDClFtJezFPSxEP1eiD4Wos-FZOnbSXKIeBFUpllV8TcEWIeT</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Wang, Gang</creator><creator>Chadli, Mohammed</creator><creator>Basin, Michael V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0140-5187</orcidid><orcidid>https://orcid.org/0000-0002-7274-4303</orcidid></search><sort><creationdate>202104</creationdate><title>Practical Terminal Sliding Mode Control of Nonlinear Uncertain Active Suspension Systems With Adaptive Disturbance Observer</title><author>Wang, Gang ; Chadli, Mohammed ; Basin, Michael V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-2fe4f6c05c29b0609b49ede799292ef5e92956d1f2e554fdf742c830530fe83b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Active suspension systems</topic><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive disturbance observer (ADO)</topic><topic>Automatic</topic><topic>Control stability</topic><topic>Convergence</topic><topic>Disturbance observers</topic><topic>disturbance suppression</topic><topic>Engineering Sciences</topic><topic>Feedback linearization</topic><topic>Nonlinear control</topic><topic>Roads</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Suspension systems</topic><topic>Suspensions (mechanical systems)</topic><topic>terminal sliding mode control (TSMC)</topic><topic>Tires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chadli, Mohammed</creatorcontrib><creatorcontrib>Basin, Michael V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Gang</au><au>Chadli, Mohammed</au><au>Basin, Michael V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Terminal Sliding Mode Control of Nonlinear Uncertain Active Suspension Systems With Adaptive Disturbance Observer</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2021-04</date><risdate>2021</risdate><volume>26</volume><issue>2</issue><spage>789</spage><epage>797</epage><pages>789-797</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In this article, a practical terminal sliding mode control (TSMC) framework based on an adaptive disturbance observer (ADO) is presented for the active suspension systems. The proposed controller requires no exact feedback linearization about the suspension dynamics. The ADO is designed to estimate the unknown dynamics and control errors produced by the motor actuator. To guarantee the fast convergence and high control accuracy, a TSMC-type surface and a continuous sliding mode reaching law are designed. The finite-time convergence of the controlled system is guaranteed based on the Lyapunov stability theory. To evaluate the performance improvement of the proposed control framework, a detailed comparison with the active disturbance rejection method has been provided. Finally, a practical hardware-in-loop experiment is implemented to validate the effectiveness of the proposed control scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.3000122</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0140-5187</orcidid><orcidid>https://orcid.org/0000-0002-7274-4303</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2021-04, Vol.26 (2), p.789-797 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2020_3000122 |
source | IEEE/IET Electronic Library |
subjects | Active control Active suspension systems Actuators Adaptive control adaptive disturbance observer (ADO) Automatic Control stability Convergence Disturbance observers disturbance suppression Engineering Sciences Feedback linearization Nonlinear control Roads Sliding mode control Stability analysis Suspension systems Suspensions (mechanical systems) terminal sliding mode control (TSMC) Tires |
title | Practical Terminal Sliding Mode Control of Nonlinear Uncertain Active Suspension Systems With Adaptive Disturbance Observer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Terminal%20Sliding%20Mode%20Control%20of%20Nonlinear%20Uncertain%20Active%20Suspension%20Systems%20With%20Adaptive%20Disturbance%20Observer&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Wang,%20Gang&rft.date=2021-04&rft.volume=26&rft.issue=2&rft.spage=789&rft.epage=797&rft.pages=789-797&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.3000122&rft_dat=%3Cproquest_RIE%3E2515749193%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515749193&rft_id=info:pmid/&rft_ieee_id=9109277&rfr_iscdi=true |