Layer-to-Layer Predictive Control of Inkjet 3-D Printing
This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e....
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2020-08, Vol.25 (4), p.1783-1793 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1793 |
---|---|
container_issue | 4 |
container_start_page | 1783 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 25 |
creator | Inyang-Udoh, Uduak Guo, Yijie Peters, Joost Oomen, Tom Mishra, Sandipan |
description | This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods. |
doi_str_mv | 10.1109/TMECH.2020.2999873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2020_2999873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108592</ieee_id><sourcerecordid>2434949055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFb_gF4CnrfO7G66maPEagsVPVTwtmw3E0mtSd2kQv-9sS2e5h3e9wY-Ia4RRohAd4vnST4dKVAwUkSUWX0iBkgGJaB5P-0zZFoao9NzcdG2KwAwCDgQ2dzvOMqukfuQvEYuqtBVP5zkTd3FZp00ZTKrP1fcJVo-9IWq7qr641KclX7d8tXxDsXb42SRT-X85WmW389l0Jo6SWA5kEZSTN4rHo-LcQG-QBvIF6m2lqDUFjhboi7JLksMgaxF5NKmgHoobg-7m9h8b7nt3KrZxrp_6ZTRhgxBmvYtdWiF2LRt5NJtYvXl484huD9Dbm_I_RlyR0M9dHOAKmb-B6hXlZLSv6eZYBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434949055</pqid></control><display><type>article</type><title>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</title><source>IEEE Electronic Library (IEL)</source><creator>Inyang-Udoh, Uduak ; Guo, Yijie ; Peters, Joost ; Oomen, Tom ; Mishra, Sandipan</creator><creatorcontrib>Inyang-Udoh, Uduak ; Guo, Yijie ; Peters, Joost ; Oomen, Tom ; Mishra, Sandipan</creatorcontrib><description>This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.2999873</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printers ; Additive manufacturing (AM) ; Algorithms ; Computational modeling ; Control algorithms ; Control theory ; Droplets ; inkjet 3-D printing ; Inkjet printing ; Mechatronics ; model predictive control (MPC) ; Optimization ; Prediction algorithms ; Predictive control ; Three dimensional printing</subject><ispartof>IEEE/ASME transactions on mechatronics, 2020-08, Vol.25 (4), p.1783-1793</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</citedby><cites>FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</cites><orcidid>0000-0001-7721-4566 ; 0000-0001-6187-9221 ; 0000-0002-4356-2156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108592$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9108592$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Inyang-Udoh, Uduak</creatorcontrib><creatorcontrib>Guo, Yijie</creatorcontrib><creatorcontrib>Peters, Joost</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><creatorcontrib>Mishra, Sandipan</creatorcontrib><title>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.</description><subject>3-D printers</subject><subject>Additive manufacturing (AM)</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Droplets</subject><subject>inkjet 3-D printing</subject><subject>Inkjet printing</subject><subject>Mechatronics</subject><subject>model predictive control (MPC)</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Three dimensional printing</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFb_gF4CnrfO7G66maPEagsVPVTwtmw3E0mtSd2kQv-9sS2e5h3e9wY-Ia4RRohAd4vnST4dKVAwUkSUWX0iBkgGJaB5P-0zZFoao9NzcdG2KwAwCDgQ2dzvOMqukfuQvEYuqtBVP5zkTd3FZp00ZTKrP1fcJVo-9IWq7qr641KclX7d8tXxDsXb42SRT-X85WmW389l0Jo6SWA5kEZSTN4rHo-LcQG-QBvIF6m2lqDUFjhboi7JLksMgaxF5NKmgHoobg-7m9h8b7nt3KrZxrp_6ZTRhgxBmvYtdWiF2LRt5NJtYvXl484huD9Dbm_I_RlyR0M9dHOAKmb-B6hXlZLSv6eZYBg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Inyang-Udoh, Uduak</creator><creator>Guo, Yijie</creator><creator>Peters, Joost</creator><creator>Oomen, Tom</creator><creator>Mishra, Sandipan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid><orcidid>https://orcid.org/0000-0001-6187-9221</orcidid><orcidid>https://orcid.org/0000-0002-4356-2156</orcidid></search><sort><creationdate>202008</creationdate><title>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</title><author>Inyang-Udoh, Uduak ; Guo, Yijie ; Peters, Joost ; Oomen, Tom ; Mishra, Sandipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Additive manufacturing (AM)</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Droplets</topic><topic>inkjet 3-D printing</topic><topic>Inkjet printing</topic><topic>Mechatronics</topic><topic>model predictive control (MPC)</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inyang-Udoh, Uduak</creatorcontrib><creatorcontrib>Guo, Yijie</creatorcontrib><creatorcontrib>Peters, Joost</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><creatorcontrib>Mishra, Sandipan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Inyang-Udoh, Uduak</au><au>Guo, Yijie</au><au>Peters, Joost</au><au>Oomen, Tom</au><au>Mishra, Sandipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2020-08</date><risdate>2020</risdate><volume>25</volume><issue>4</issue><spage>1783</spage><epage>1793</epage><pages>1783-1793</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.2999873</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid><orcidid>https://orcid.org/0000-0001-6187-9221</orcidid><orcidid>https://orcid.org/0000-0002-4356-2156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2020-08, Vol.25 (4), p.1783-1793 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2020_2999873 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D printers Additive manufacturing (AM) Algorithms Computational modeling Control algorithms Control theory Droplets inkjet 3-D printing Inkjet printing Mechatronics model predictive control (MPC) Optimization Prediction algorithms Predictive control Three dimensional printing |
title | Layer-to-Layer Predictive Control of Inkjet 3-D Printing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-to-Layer%20Predictive%20Control%20of%20Inkjet%203-D%20Printing&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Inyang-Udoh,%20Uduak&rft.date=2020-08&rft.volume=25&rft.issue=4&rft.spage=1783&rft.epage=1793&rft.pages=1783-1793&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.2999873&rft_dat=%3Cproquest_RIE%3E2434949055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434949055&rft_id=info:pmid/&rft_ieee_id=9108592&rfr_iscdi=true |