Layer-to-Layer Predictive Control of Inkjet 3-D Printing

This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2020-08, Vol.25 (4), p.1783-1793
Hauptverfasser: Inyang-Udoh, Uduak, Guo, Yijie, Peters, Joost, Oomen, Tom, Mishra, Sandipan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1793
container_issue 4
container_start_page 1783
container_title IEEE/ASME transactions on mechatronics
container_volume 25
creator Inyang-Udoh, Uduak
Guo, Yijie
Peters, Joost
Oomen, Tom
Mishra, Sandipan
description This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.
doi_str_mv 10.1109/TMECH.2020.2999873
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2020_2999873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9108592</ieee_id><sourcerecordid>2434949055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFb_gF4CnrfO7G66maPEagsVPVTwtmw3E0mtSd2kQv-9sS2e5h3e9wY-Ia4RRohAd4vnST4dKVAwUkSUWX0iBkgGJaB5P-0zZFoao9NzcdG2KwAwCDgQ2dzvOMqukfuQvEYuqtBVP5zkTd3FZp00ZTKrP1fcJVo-9IWq7qr641KclX7d8tXxDsXb42SRT-X85WmW389l0Jo6SWA5kEZSTN4rHo-LcQG-QBvIF6m2lqDUFjhboi7JLksMgaxF5NKmgHoobg-7m9h8b7nt3KrZxrp_6ZTRhgxBmvYtdWiF2LRt5NJtYvXl484huD9Dbm_I_RlyR0M9dHOAKmb-B6hXlZLSv6eZYBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434949055</pqid></control><display><type>article</type><title>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</title><source>IEEE Electronic Library (IEL)</source><creator>Inyang-Udoh, Uduak ; Guo, Yijie ; Peters, Joost ; Oomen, Tom ; Mishra, Sandipan</creator><creatorcontrib>Inyang-Udoh, Uduak ; Guo, Yijie ; Peters, Joost ; Oomen, Tom ; Mishra, Sandipan</creatorcontrib><description>This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.2999873</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printers ; Additive manufacturing (AM) ; Algorithms ; Computational modeling ; Control algorithms ; Control theory ; Droplets ; inkjet 3-D printing ; Inkjet printing ; Mechatronics ; model predictive control (MPC) ; Optimization ; Prediction algorithms ; Predictive control ; Three dimensional printing</subject><ispartof>IEEE/ASME transactions on mechatronics, 2020-08, Vol.25 (4), p.1783-1793</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</citedby><cites>FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</cites><orcidid>0000-0001-7721-4566 ; 0000-0001-6187-9221 ; 0000-0002-4356-2156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9108592$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9108592$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Inyang-Udoh, Uduak</creatorcontrib><creatorcontrib>Guo, Yijie</creatorcontrib><creatorcontrib>Peters, Joost</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><creatorcontrib>Mishra, Sandipan</creatorcontrib><title>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.</description><subject>3-D printers</subject><subject>Additive manufacturing (AM)</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Droplets</subject><subject>inkjet 3-D printing</subject><subject>Inkjet printing</subject><subject>Mechatronics</subject><subject>model predictive control (MPC)</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Three dimensional printing</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFb_gF4CnrfO7G66maPEagsVPVTwtmw3E0mtSd2kQv-9sS2e5h3e9wY-Ia4RRohAd4vnST4dKVAwUkSUWX0iBkgGJaB5P-0zZFoao9NzcdG2KwAwCDgQ2dzvOMqukfuQvEYuqtBVP5zkTd3FZp00ZTKrP1fcJVo-9IWq7qr641KclX7d8tXxDsXb42SRT-X85WmW389l0Jo6SWA5kEZSTN4rHo-LcQG-QBvIF6m2lqDUFjhboi7JLksMgaxF5NKmgHoobg-7m9h8b7nt3KrZxrp_6ZTRhgxBmvYtdWiF2LRt5NJtYvXl484huD9Dbm_I_RlyR0M9dHOAKmb-B6hXlZLSv6eZYBg</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Inyang-Udoh, Uduak</creator><creator>Guo, Yijie</creator><creator>Peters, Joost</creator><creator>Oomen, Tom</creator><creator>Mishra, Sandipan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid><orcidid>https://orcid.org/0000-0001-6187-9221</orcidid><orcidid>https://orcid.org/0000-0002-4356-2156</orcidid></search><sort><creationdate>202008</creationdate><title>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</title><author>Inyang-Udoh, Uduak ; Guo, Yijie ; Peters, Joost ; Oomen, Tom ; Mishra, Sandipan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-907ec93192e9aa2e66d6d0ad17c9ad537790f370e8b13f97bf1cc97711ef75013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Additive manufacturing (AM)</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Droplets</topic><topic>inkjet 3-D printing</topic><topic>Inkjet printing</topic><topic>Mechatronics</topic><topic>model predictive control (MPC)</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inyang-Udoh, Uduak</creatorcontrib><creatorcontrib>Guo, Yijie</creatorcontrib><creatorcontrib>Peters, Joost</creatorcontrib><creatorcontrib>Oomen, Tom</creatorcontrib><creatorcontrib>Mishra, Sandipan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Inyang-Udoh, Uduak</au><au>Guo, Yijie</au><au>Peters, Joost</au><au>Oomen, Tom</au><au>Mishra, Sandipan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-to-Layer Predictive Control of Inkjet 3-D Printing</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2020-08</date><risdate>2020</risdate><volume>25</volume><issue>4</issue><spage>1783</spage><epage>1793</epage><pages>1783-1793</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing problem. The large number of decision variables, i.e., droplet volumes at each grid point, in high resolution inkjet 3-D printing makes centralized methods extremely time-consuming, thus, a distributed implementation of the controller is necessary. First, a graph-based height evolution model that captures the liquid spreading dynamics is described. Based on this model, a scalable closed-loop control algorithm using distributed model predictive control (MPC) that can reduce computation time significantly is designed and experimentally implemented. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing centralized MPC methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.2999873</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7721-4566</orcidid><orcidid>https://orcid.org/0000-0001-6187-9221</orcidid><orcidid>https://orcid.org/0000-0002-4356-2156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2020-08, Vol.25 (4), p.1783-1793
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2020_2999873
source IEEE Electronic Library (IEL)
subjects 3-D printers
Additive manufacturing (AM)
Algorithms
Computational modeling
Control algorithms
Control theory
Droplets
inkjet 3-D printing
Inkjet printing
Mechatronics
model predictive control (MPC)
Optimization
Prediction algorithms
Predictive control
Three dimensional printing
title Layer-to-Layer Predictive Control of Inkjet 3-D Printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-to-Layer%20Predictive%20Control%20of%20Inkjet%203-D%20Printing&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Inyang-Udoh,%20Uduak&rft.date=2020-08&rft.volume=25&rft.issue=4&rft.spage=1783&rft.epage=1793&rft.pages=1783-1793&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.2999873&rft_dat=%3Cproquest_RIE%3E2434949055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434949055&rft_id=info:pmid/&rft_ieee_id=9108592&rfr_iscdi=true