Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm
A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2019-06, Vol.24 (3), p.902-912 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 912 |
---|---|
container_issue | 3 |
container_start_page | 902 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 24 |
creator | Xie, Hui Fan, Xinjian Sun, Mengmeng Lin, Zhihua He, Qiang Sun, Lining |
description | A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments. |
doi_str_mv | 10.1109/TMECH.2019.2910269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2019_2910269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8686188</ieee_id><sourcerecordid>2243275230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKfu7OZj9yiltkKDQit4WybJpKRNsnUTEf-96Qee5j28z8zwMHYPYgIgzNM6nU0XEynATKQBIWNzwUZgQggEhJ-XQxZaBWGoomt203VbIUQIAkZs9e7dxmPTYFYTn1NLHvvKtRzbgqfuGKeu7b2ruSs58lWLO6qrHfEUNy31Vc7TKvfOu8z1fPWDvrllVyXWHd2d55h9vMzW00WwfJu_Tp-XQS5N1AfGqEIrpKSMKAckAqmzsjSUJToikQwloxCNoFBJ1EUBcRaWuYx1ZkjEWo3Z42nv3ruvb-p6u3Xfvh1OWikHJomkEkNLnlrDk13nqbR7XzXofy0Ie5Bnj_LsQZ49yxughxNUEdE_oGMdg9bqD6jYa3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243275230</pqid></control><display><type>article</type><title>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</title><source>IEEE</source><creator>Xie, Hui ; Fan, Xinjian ; Sun, Mengmeng ; Lin, Zhihua ; He, Qiang ; Sun, Lining</creator><creatorcontrib>Xie, Hui ; Fan, Xinjian ; Sun, Mengmeng ; Lin, Zhihua ; He, Qiang ; Sun, Lining</creatorcontrib><description>A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2910269</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Confined spaces ; Dismantling ; Drug delivery systems ; Genetic algorithms ; Hematite ; Locomotion ; Magnetic fields ; Magnetic microrobot ; Magnetic resonance imaging ; Magnetoacoustic effects ; Micromagnetics ; microrobot swarm ; Microrobots ; Motion control ; Navigation ; Robustness (mathematics) ; Serpentine ; Steering ; swarm control ; swarm generation ; Target tracking ; Tracking ; Trajectory tracking</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-06, Vol.24 (3), p.902-912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</citedby><cites>FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</cites><orcidid>0000-0003-4299-2776 ; 0000-0002-3557-6865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8686188$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8686188$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Fan, Xinjian</creatorcontrib><creatorcontrib>Sun, Mengmeng</creatorcontrib><creatorcontrib>Lin, Zhihua</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><title>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.</description><subject>Computer simulation</subject><subject>Confined spaces</subject><subject>Dismantling</subject><subject>Drug delivery systems</subject><subject>Genetic algorithms</subject><subject>Hematite</subject><subject>Locomotion</subject><subject>Magnetic fields</subject><subject>Magnetic microrobot</subject><subject>Magnetic resonance imaging</subject><subject>Magnetoacoustic effects</subject><subject>Micromagnetics</subject><subject>microrobot swarm</subject><subject>Microrobots</subject><subject>Motion control</subject><subject>Navigation</subject><subject>Robustness (mathematics)</subject><subject>Serpentine</subject><subject>Steering</subject><subject>swarm control</subject><subject>swarm generation</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Trajectory tracking</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKfu7OZj9yiltkKDQit4WybJpKRNsnUTEf-96Qee5j28z8zwMHYPYgIgzNM6nU0XEynATKQBIWNzwUZgQggEhJ-XQxZaBWGoomt203VbIUQIAkZs9e7dxmPTYFYTn1NLHvvKtRzbgqfuGKeu7b2ruSs58lWLO6qrHfEUNy31Vc7TKvfOu8z1fPWDvrllVyXWHd2d55h9vMzW00WwfJu_Tp-XQS5N1AfGqEIrpKSMKAckAqmzsjSUJToikQwloxCNoFBJ1EUBcRaWuYx1ZkjEWo3Z42nv3ruvb-p6u3Xfvh1OWikHJomkEkNLnlrDk13nqbR7XzXofy0Ie5Bnj_LsQZ49yxughxNUEdE_oGMdg9bqD6jYa3Y</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Xie, Hui</creator><creator>Fan, Xinjian</creator><creator>Sun, Mengmeng</creator><creator>Lin, Zhihua</creator><creator>He, Qiang</creator><creator>Sun, Lining</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4299-2776</orcidid><orcidid>https://orcid.org/0000-0002-3557-6865</orcidid></search><sort><creationdate>201906</creationdate><title>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</title><author>Xie, Hui ; Fan, Xinjian ; Sun, Mengmeng ; Lin, Zhihua ; He, Qiang ; Sun, Lining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Confined spaces</topic><topic>Dismantling</topic><topic>Drug delivery systems</topic><topic>Genetic algorithms</topic><topic>Hematite</topic><topic>Locomotion</topic><topic>Magnetic fields</topic><topic>Magnetic microrobot</topic><topic>Magnetic resonance imaging</topic><topic>Magnetoacoustic effects</topic><topic>Micromagnetics</topic><topic>microrobot swarm</topic><topic>Microrobots</topic><topic>Motion control</topic><topic>Navigation</topic><topic>Robustness (mathematics)</topic><topic>Serpentine</topic><topic>Steering</topic><topic>swarm control</topic><topic>swarm generation</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Trajectory tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Fan, Xinjian</creatorcontrib><creatorcontrib>Sun, Mengmeng</creatorcontrib><creatorcontrib>Lin, Zhihua</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Hui</au><au>Fan, Xinjian</au><au>Sun, Mengmeng</au><au>Lin, Zhihua</au><au>He, Qiang</au><au>Sun, Lining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-06</date><risdate>2019</risdate><volume>24</volume><issue>3</issue><spage>902</spage><epage>912</epage><pages>902-912</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2910269</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4299-2776</orcidid><orcidid>https://orcid.org/0000-0002-3557-6865</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2019-06, Vol.24 (3), p.902-912 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2019_2910269 |
source | IEEE |
subjects | Computer simulation Confined spaces Dismantling Drug delivery systems Genetic algorithms Hematite Locomotion Magnetic fields Magnetic microrobot Magnetic resonance imaging Magnetoacoustic effects Micromagnetics microrobot swarm Microrobots Motion control Navigation Robustness (mathematics) Serpentine Steering swarm control swarm generation Target tracking Tracking Trajectory tracking |
title | Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Generation%20and%20Motion%20Control%20of%20a%20Snakelike%20Magnetic%20Microrobot%20Swarm&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Xie,%20Hui&rft.date=2019-06&rft.volume=24&rft.issue=3&rft.spage=902&rft.epage=912&rft.pages=902-912&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2910269&rft_dat=%3Cproquest_RIE%3E2243275230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243275230&rft_id=info:pmid/&rft_ieee_id=8686188&rfr_iscdi=true |