Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm

A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2019-06, Vol.24 (3), p.902-912
Hauptverfasser: Xie, Hui, Fan, Xinjian, Sun, Mengmeng, Lin, Zhihua, He, Qiang, Sun, Lining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 912
container_issue 3
container_start_page 902
container_title IEEE/ASME transactions on mechatronics
container_volume 24
creator Xie, Hui
Fan, Xinjian
Sun, Mengmeng
Lin, Zhihua
He, Qiang
Sun, Lining
description A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.
doi_str_mv 10.1109/TMECH.2019.2910269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2019_2910269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8686188</ieee_id><sourcerecordid>2243275230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKfu7OZj9yiltkKDQit4WybJpKRNsnUTEf-96Qee5j28z8zwMHYPYgIgzNM6nU0XEynATKQBIWNzwUZgQggEhJ-XQxZaBWGoomt203VbIUQIAkZs9e7dxmPTYFYTn1NLHvvKtRzbgqfuGKeu7b2ruSs58lWLO6qrHfEUNy31Vc7TKvfOu8z1fPWDvrllVyXWHd2d55h9vMzW00WwfJu_Tp-XQS5N1AfGqEIrpKSMKAckAqmzsjSUJToikQwloxCNoFBJ1EUBcRaWuYx1ZkjEWo3Z42nv3ruvb-p6u3Xfvh1OWikHJomkEkNLnlrDk13nqbR7XzXofy0Ie5Bnj_LsQZ49yxughxNUEdE_oGMdg9bqD6jYa3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243275230</pqid></control><display><type>article</type><title>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</title><source>IEEE</source><creator>Xie, Hui ; Fan, Xinjian ; Sun, Mengmeng ; Lin, Zhihua ; He, Qiang ; Sun, Lining</creator><creatorcontrib>Xie, Hui ; Fan, Xinjian ; Sun, Mengmeng ; Lin, Zhihua ; He, Qiang ; Sun, Lining</creatorcontrib><description>A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2019.2910269</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Confined spaces ; Dismantling ; Drug delivery systems ; Genetic algorithms ; Hematite ; Locomotion ; Magnetic fields ; Magnetic microrobot ; Magnetic resonance imaging ; Magnetoacoustic effects ; Micromagnetics ; microrobot swarm ; Microrobots ; Motion control ; Navigation ; Robustness (mathematics) ; Serpentine ; Steering ; swarm control ; swarm generation ; Target tracking ; Tracking ; Trajectory tracking</subject><ispartof>IEEE/ASME transactions on mechatronics, 2019-06, Vol.24 (3), p.902-912</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</citedby><cites>FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</cites><orcidid>0000-0003-4299-2776 ; 0000-0002-3557-6865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8686188$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8686188$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Fan, Xinjian</creatorcontrib><creatorcontrib>Sun, Mengmeng</creatorcontrib><creatorcontrib>Lin, Zhihua</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><title>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.</description><subject>Computer simulation</subject><subject>Confined spaces</subject><subject>Dismantling</subject><subject>Drug delivery systems</subject><subject>Genetic algorithms</subject><subject>Hematite</subject><subject>Locomotion</subject><subject>Magnetic fields</subject><subject>Magnetic microrobot</subject><subject>Magnetic resonance imaging</subject><subject>Magnetoacoustic effects</subject><subject>Micromagnetics</subject><subject>microrobot swarm</subject><subject>Microrobots</subject><subject>Motion control</subject><subject>Navigation</subject><subject>Robustness (mathematics)</subject><subject>Serpentine</subject><subject>Steering</subject><subject>swarm control</subject><subject>swarm generation</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Trajectory tracking</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKfu7OZj9yiltkKDQit4WybJpKRNsnUTEf-96Qee5j28z8zwMHYPYgIgzNM6nU0XEynATKQBIWNzwUZgQggEhJ-XQxZaBWGoomt203VbIUQIAkZs9e7dxmPTYFYTn1NLHvvKtRzbgqfuGKeu7b2ruSs58lWLO6qrHfEUNy31Vc7TKvfOu8z1fPWDvrllVyXWHd2d55h9vMzW00WwfJu_Tp-XQS5N1AfGqEIrpKSMKAckAqmzsjSUJToikQwloxCNoFBJ1EUBcRaWuYx1ZkjEWo3Z42nv3ruvb-p6u3Xfvh1OWikHJomkEkNLnlrDk13nqbR7XzXofy0Ie5Bnj_LsQZ49yxughxNUEdE_oGMdg9bqD6jYa3Y</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Xie, Hui</creator><creator>Fan, Xinjian</creator><creator>Sun, Mengmeng</creator><creator>Lin, Zhihua</creator><creator>He, Qiang</creator><creator>Sun, Lining</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4299-2776</orcidid><orcidid>https://orcid.org/0000-0002-3557-6865</orcidid></search><sort><creationdate>201906</creationdate><title>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</title><author>Xie, Hui ; Fan, Xinjian ; Sun, Mengmeng ; Lin, Zhihua ; He, Qiang ; Sun, Lining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-993d83ae7f5ec1aee128bff9eb785e0729593aa90e432a8dd16b4fc268b9e0683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Confined spaces</topic><topic>Dismantling</topic><topic>Drug delivery systems</topic><topic>Genetic algorithms</topic><topic>Hematite</topic><topic>Locomotion</topic><topic>Magnetic fields</topic><topic>Magnetic microrobot</topic><topic>Magnetic resonance imaging</topic><topic>Magnetoacoustic effects</topic><topic>Micromagnetics</topic><topic>microrobot swarm</topic><topic>Microrobots</topic><topic>Motion control</topic><topic>Navigation</topic><topic>Robustness (mathematics)</topic><topic>Serpentine</topic><topic>Steering</topic><topic>swarm control</topic><topic>swarm generation</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Trajectory tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Fan, Xinjian</creatorcontrib><creatorcontrib>Sun, Mengmeng</creatorcontrib><creatorcontrib>Lin, Zhihua</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Hui</au><au>Fan, Xinjian</au><au>Sun, Mengmeng</au><au>Lin, Zhihua</au><au>He, Qiang</au><au>Sun, Lining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2019-06</date><risdate>2019</risdate><volume>24</volume><issue>3</issue><spage>902</spage><epage>912</epage><pages>902-912</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A new method for programmable generation and motion control of a snakelike magnetic microrobot swarm (SMS) is presented. The SMS is assembled from peanut-shaped hematite colloidal particles (length: ~3 μm, diameter: ~1.5 μm) driven by rotating magnetic fields. The SMS exhibits a dynamic-equilibrium chain that can capture additional microrobots to complete its evolution. Here, the SMS's mechanisms of generation and collective motion are analyzed and simulated. Based on an investigation of the magnetic attractive potential, hydrodynamic interactions, and viscous resistance, numerical models are proposed to estimate the interactive forces between the individual entities. Under microscopic visual navigation, efficient swarm generation is achieved using the Genetic algorithm, and robust target tracking is achieved using the Meanshift algorithm. Moreover, the reversible assembly and disassembly capabilities of the SMS are demonstrated. By regulating the rotational frequency, intensity, and steering angle of the input magnetic field, the SMS enables highprecision trajectory tracking at a desired velocity, in both simple and complex environments. Finally, it was verified that the SMS can perform serpentine locomotion in curved and branched narrow channels with high mobility. The established microrobotic swarm has great potential for efficient drug delivery in confined environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2019.2910269</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4299-2776</orcidid><orcidid>https://orcid.org/0000-0002-3557-6865</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2019-06, Vol.24 (3), p.902-912
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2019_2910269
source IEEE
subjects Computer simulation
Confined spaces
Dismantling
Drug delivery systems
Genetic algorithms
Hematite
Locomotion
Magnetic fields
Magnetic microrobot
Magnetic resonance imaging
Magnetoacoustic effects
Micromagnetics
microrobot swarm
Microrobots
Motion control
Navigation
Robustness (mathematics)
Serpentine
Steering
swarm control
swarm generation
Target tracking
Tracking
Trajectory tracking
title Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Generation%20and%20Motion%20Control%20of%20a%20Snakelike%20Magnetic%20Microrobot%20Swarm&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Xie,%20Hui&rft.date=2019-06&rft.volume=24&rft.issue=3&rft.spage=902&rft.epage=912&rft.pages=902-912&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2019.2910269&rft_dat=%3Cproquest_RIE%3E2243275230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243275230&rft_id=info:pmid/&rft_ieee_id=8686188&rfr_iscdi=true