An Adjustable Compliant Joint for Lower-Limb Exoskeletons

The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2015-04, Vol.20 (2), p.889-898
Hauptverfasser: Cestari, Manuel, Sanz-Merodio, Daniel, Arevalo, Juan Carlos, Garcia, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 2
container_start_page 889
container_title IEEE/ASME transactions on mechatronics
container_volume 20
creator Cestari, Manuel
Sanz-Merodio, Daniel
Arevalo, Juan Carlos
Garcia, Elena
description The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.
doi_str_mv 10.1109/TMECH.2014.2324036
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2014_2324036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6826501</ieee_id><sourcerecordid>3473752411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7uxONtljKfWLiJcK3pZNOoHUJFt3E9R_b2qLBy8zw_C8w_Awdgl8BsD17ep5uXiYCQ44E1Igl-qITUAjxOPq7XiceSZjRJmcsrMQNpxzBA4TpuddNF9vhtDboqFo4dptU9uuj55cPdbK-Sh3n-TjvG6LaPnlwjs11LsunLOTyjaBLg59yl7vlqvFQ5y_3D8u5nlcIoo-zjDVyDWSACuqgicWLApeChJphZhoxROVpnJNBFrbrCihwKQiISyoQkk5ZTf7u1vvPgYKvWnrUFLT2I7cEAwoFAJTnuzQ63_oxg2-G78bKUiVTpRIR0rsqdK7EDxVZuvr1vpvA9zsbJpfm2Zn0xxsjqGrfagmor-AyoRKOMgf62Rt-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1617695627</pqid></control><display><type>article</type><title>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</title><source>IEEE Electronic Library (IEL)</source><creator>Cestari, Manuel ; Sanz-Merodio, Daniel ; Arevalo, Juan Carlos ; Garcia, Elena</creator><creatorcontrib>Cestari, Manuel ; Sanz-Merodio, Daniel ; Arevalo, Juan Carlos ; Garcia, Elena</creatorcontrib><description>The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2014.2324036</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active orthoses ; Actuators ; Adjustable ; compliant joint ; Devices ; Energy consumption ; Exoskeletons ; Force ; force sensor ; Joints ; Knee ; Mechatronics ; Prototypes ; Torque</subject><ispartof>IEEE/ASME transactions on mechatronics, 2015-04, Vol.20 (2), p.889-898</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</citedby><cites>FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6826501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6826501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cestari, Manuel</creatorcontrib><creatorcontrib>Sanz-Merodio, Daniel</creatorcontrib><creatorcontrib>Arevalo, Juan Carlos</creatorcontrib><creatorcontrib>Garcia, Elena</creatorcontrib><title>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.</description><subject>Active control</subject><subject>Active orthoses</subject><subject>Actuators</subject><subject>Adjustable</subject><subject>compliant joint</subject><subject>Devices</subject><subject>Energy consumption</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>force sensor</subject><subject>Joints</subject><subject>Knee</subject><subject>Mechatronics</subject><subject>Prototypes</subject><subject>Torque</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7uxONtljKfWLiJcK3pZNOoHUJFt3E9R_b2qLBy8zw_C8w_Awdgl8BsD17ep5uXiYCQ44E1Igl-qITUAjxOPq7XiceSZjRJmcsrMQNpxzBA4TpuddNF9vhtDboqFo4dptU9uuj55cPdbK-Sh3n-TjvG6LaPnlwjs11LsunLOTyjaBLg59yl7vlqvFQ5y_3D8u5nlcIoo-zjDVyDWSACuqgicWLApeChJphZhoxROVpnJNBFrbrCihwKQiISyoQkk5ZTf7u1vvPgYKvWnrUFLT2I7cEAwoFAJTnuzQ63_oxg2-G78bKUiVTpRIR0rsqdK7EDxVZuvr1vpvA9zsbJpfm2Zn0xxsjqGrfagmor-AyoRKOMgf62Rt-g</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Cestari, Manuel</creator><creator>Sanz-Merodio, Daniel</creator><creator>Arevalo, Juan Carlos</creator><creator>Garcia, Elena</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20150401</creationdate><title>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</title><author>Cestari, Manuel ; Sanz-Merodio, Daniel ; Arevalo, Juan Carlos ; Garcia, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active control</topic><topic>Active orthoses</topic><topic>Actuators</topic><topic>Adjustable</topic><topic>compliant joint</topic><topic>Devices</topic><topic>Energy consumption</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>force sensor</topic><topic>Joints</topic><topic>Knee</topic><topic>Mechatronics</topic><topic>Prototypes</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cestari, Manuel</creatorcontrib><creatorcontrib>Sanz-Merodio, Daniel</creatorcontrib><creatorcontrib>Arevalo, Juan Carlos</creatorcontrib><creatorcontrib>Garcia, Elena</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cestari, Manuel</au><au>Sanz-Merodio, Daniel</au><au>Arevalo, Juan Carlos</au><au>Garcia, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>20</volume><issue>2</issue><spage>889</spage><epage>898</epage><pages>889-898</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2014.2324036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2015-04, Vol.20 (2), p.889-898
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2014_2324036
source IEEE Electronic Library (IEL)
subjects Active control
Active orthoses
Actuators
Adjustable
compliant joint
Devices
Energy consumption
Exoskeletons
Force
force sensor
Joints
Knee
Mechatronics
Prototypes
Torque
title An Adjustable Compliant Joint for Lower-Limb Exoskeletons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adjustable%20Compliant%20Joint%20for%20Lower-Limb%20Exoskeletons&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Cestari,%20Manuel&rft.date=2015-04-01&rft.volume=20&rft.issue=2&rft.spage=889&rft.epage=898&rft.pages=889-898&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2014.2324036&rft_dat=%3Cproquest_RIE%3E3473752411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1617695627&rft_id=info:pmid/&rft_ieee_id=6826501&rfr_iscdi=true