An Adjustable Compliant Joint for Lower-Limb Exoskeletons
The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may n...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2015-04, Vol.20 (2), p.889-898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 2 |
container_start_page | 889 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 20 |
creator | Cestari, Manuel Sanz-Merodio, Daniel Arevalo, Juan Carlos Garcia, Elena |
description | The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances. |
doi_str_mv | 10.1109/TMECH.2014.2324036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2014_2324036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6826501</ieee_id><sourcerecordid>3473752411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7uxONtljKfWLiJcK3pZNOoHUJFt3E9R_b2qLBy8zw_C8w_Awdgl8BsD17ep5uXiYCQ44E1Igl-qITUAjxOPq7XiceSZjRJmcsrMQNpxzBA4TpuddNF9vhtDboqFo4dptU9uuj55cPdbK-Sh3n-TjvG6LaPnlwjs11LsunLOTyjaBLg59yl7vlqvFQ5y_3D8u5nlcIoo-zjDVyDWSACuqgicWLApeChJphZhoxROVpnJNBFrbrCihwKQiISyoQkk5ZTf7u1vvPgYKvWnrUFLT2I7cEAwoFAJTnuzQ63_oxg2-G78bKUiVTpRIR0rsqdK7EDxVZuvr1vpvA9zsbJpfm2Zn0xxsjqGrfagmor-AyoRKOMgf62Rt-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1617695627</pqid></control><display><type>article</type><title>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</title><source>IEEE Electronic Library (IEL)</source><creator>Cestari, Manuel ; Sanz-Merodio, Daniel ; Arevalo, Juan Carlos ; Garcia, Elena</creator><creatorcontrib>Cestari, Manuel ; Sanz-Merodio, Daniel ; Arevalo, Juan Carlos ; Garcia, Elena</creatorcontrib><description>The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2014.2324036</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active orthoses ; Actuators ; Adjustable ; compliant joint ; Devices ; Energy consumption ; Exoskeletons ; Force ; force sensor ; Joints ; Knee ; Mechatronics ; Prototypes ; Torque</subject><ispartof>IEEE/ASME transactions on mechatronics, 2015-04, Vol.20 (2), p.889-898</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</citedby><cites>FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6826501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6826501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cestari, Manuel</creatorcontrib><creatorcontrib>Sanz-Merodio, Daniel</creatorcontrib><creatorcontrib>Arevalo, Juan Carlos</creatorcontrib><creatorcontrib>Garcia, Elena</creatorcontrib><title>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.</description><subject>Active control</subject><subject>Active orthoses</subject><subject>Actuators</subject><subject>Adjustable</subject><subject>compliant joint</subject><subject>Devices</subject><subject>Energy consumption</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>force sensor</subject><subject>Joints</subject><subject>Knee</subject><subject>Mechatronics</subject><subject>Prototypes</subject><subject>Torque</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7uxONtljKfWLiJcK3pZNOoHUJFt3E9R_b2qLBy8zw_C8w_Awdgl8BsD17ep5uXiYCQ44E1Igl-qITUAjxOPq7XiceSZjRJmcsrMQNpxzBA4TpuddNF9vhtDboqFo4dptU9uuj55cPdbK-Sh3n-TjvG6LaPnlwjs11LsunLOTyjaBLg59yl7vlqvFQ5y_3D8u5nlcIoo-zjDVyDWSACuqgicWLApeChJphZhoxROVpnJNBFrbrCihwKQiISyoQkk5ZTf7u1vvPgYKvWnrUFLT2I7cEAwoFAJTnuzQ63_oxg2-G78bKUiVTpRIR0rsqdK7EDxVZuvr1vpvA9zsbJpfm2Zn0xxsjqGrfagmor-AyoRKOMgf62Rt-g</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Cestari, Manuel</creator><creator>Sanz-Merodio, Daniel</creator><creator>Arevalo, Juan Carlos</creator><creator>Garcia, Elena</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20150401</creationdate><title>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</title><author>Cestari, Manuel ; Sanz-Merodio, Daniel ; Arevalo, Juan Carlos ; Garcia, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-84794094e21a2fb05a1a420c2e27f44596056773dee199a8bc1b45fe22a16b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active control</topic><topic>Active orthoses</topic><topic>Actuators</topic><topic>Adjustable</topic><topic>compliant joint</topic><topic>Devices</topic><topic>Energy consumption</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>force sensor</topic><topic>Joints</topic><topic>Knee</topic><topic>Mechatronics</topic><topic>Prototypes</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cestari, Manuel</creatorcontrib><creatorcontrib>Sanz-Merodio, Daniel</creatorcontrib><creatorcontrib>Arevalo, Juan Carlos</creatorcontrib><creatorcontrib>Garcia, Elena</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cestari, Manuel</au><au>Sanz-Merodio, Daniel</au><au>Arevalo, Juan Carlos</au><au>Garcia, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adjustable Compliant Joint for Lower-Limb Exoskeletons</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>20</volume><issue>2</issue><spage>889</spage><epage>898</epage><pages>889-898</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2014.2324036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2015-04, Vol.20 (2), p.889-898 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMECH_2014_2324036 |
source | IEEE Electronic Library (IEL) |
subjects | Active control Active orthoses Actuators Adjustable compliant joint Devices Energy consumption Exoskeletons Force force sensor Joints Knee Mechatronics Prototypes Torque |
title | An Adjustable Compliant Joint for Lower-Limb Exoskeletons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adjustable%20Compliant%20Joint%20for%20Lower-Limb%20Exoskeletons&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Cestari,%20Manuel&rft.date=2015-04-01&rft.volume=20&rft.issue=2&rft.spage=889&rft.epage=898&rft.pages=889-898&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2014.2324036&rft_dat=%3Cproquest_RIE%3E3473752411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1617695627&rft_id=info:pmid/&rft_ieee_id=6826501&rfr_iscdi=true |