Reinforcement Learning and Synergistic Control of the ACT Hand

Tendon-driven systems are ubiquitous in biology and provide considerable advantages for robotic manipulators, but control of these systems is challenging because of the increase in dimensionality and intrinsic nonlinearities. Researchers in biological movement control have suggested that the brain m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2013-04, Vol.18 (2), p.569-577
Hauptverfasser: Rombokas, E., Malhotra, M., Theodorou, E. A., Todorov, E., Matsuoka, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 2
container_start_page 569
container_title IEEE/ASME transactions on mechatronics
container_volume 18
creator Rombokas, E.
Malhotra, M.
Theodorou, E. A.
Todorov, E.
Matsuoka, Y.
description Tendon-driven systems are ubiquitous in biology and provide considerable advantages for robotic manipulators, but control of these systems is challenging because of the increase in dimensionality and intrinsic nonlinearities. Researchers in biological movement control have suggested that the brain may employ "muscle synergies" to make planning, control, and learning more tractable by expressing the tendon space in a lower dimensional virtual synergistic space. We employ synergies that respect the differing constraints of actuation and sensation, and apply path integral reinforcement learning in the virtual synergistic space as well as the full tendon space. Path integral reinforcement learning has been used successfully on torque-driven systems to learn episodic tasks without using explicit models, which is particularly important for difficult-to-model dynamics like tendon networks and contact transitions. We show that optimizing a small number of trajectories in virtual synergy space can produce comparable performance to optimizing the trajectories of the tendons individually. The six tendons of the index finger and eight tendons of the thumb, each actuating four degrees of joint freedom, are used to slide a switch and turn a knob. The learned control strategies provide a method for discovery of novel task strategies and system phenomena without explicitly modeling the physics of the robot and environment.
doi_str_mv 10.1109/TMECH.2012.2219880
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMECH_2012_2219880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6341113</ieee_id><sourcerecordid>10_1109_TMECH_2012_2219880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-154fe9c347d8ddf1df32c68f36047b8cbc926c0f6305d76da3d7be9153217e783</originalsourceid><addsrcrecordid>eNo9kMFKxDAURYMoOI7-gG7yA63vJWmbboShjFaoCFrBXWmTl7Eyk0razfy9HWdw9S68e-7iMHaLECNCfl-_rIsyFoAiFgJzreGMLTBXGAGqz_M5g5aRUjK5ZFfj-A0ACgEX7OGNeu-GYGhHfuIVtcH3fsNbb_n73lPY9OPUG14MfgrDlg-OT1_EV0XNy7lzzS5cux3p5nSX7ONxXRdlVL0-PRerKjIyhSnCRDnKjVSZ1dY6tE4Kk2o3P1XWadOZXKQGXCohsVlqW2mzjnJMpMCMMi2XTBx3TRjGMZBrfkK_a8O-QWgOBpo_A83BQHMyMEN3R6gnon8glQoRpfwF02lW6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reinforcement Learning and Synergistic Control of the ACT Hand</title><source>IEEE Electronic Library (IEL)</source><creator>Rombokas, E. ; Malhotra, M. ; Theodorou, E. A. ; Todorov, E. ; Matsuoka, Y.</creator><creatorcontrib>Rombokas, E. ; Malhotra, M. ; Theodorou, E. A. ; Todorov, E. ; Matsuoka, Y.</creatorcontrib><description>Tendon-driven systems are ubiquitous in biology and provide considerable advantages for robotic manipulators, but control of these systems is challenging because of the increase in dimensionality and intrinsic nonlinearities. Researchers in biological movement control have suggested that the brain may employ "muscle synergies" to make planning, control, and learning more tractable by expressing the tendon space in a lower dimensional virtual synergistic space. We employ synergies that respect the differing constraints of actuation and sensation, and apply path integral reinforcement learning in the virtual synergistic space as well as the full tendon space. Path integral reinforcement learning has been used successfully on torque-driven systems to learn episodic tasks without using explicit models, which is particularly important for difficult-to-model dynamics like tendon networks and contact transitions. We show that optimizing a small number of trajectories in virtual synergy space can produce comparable performance to optimizing the trajectories of the tendons individually. The six tendons of the index finger and eight tendons of the thumb, each actuating four degrees of joint freedom, are used to slide a switch and turn a knob. The learned control strategies provide a method for discovery of novel task strategies and system phenomena without explicitly modeling the physics of the robot and environment.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2012.2219880</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; Biologically inspired control ; Joints ; Learning ; Optimal control ; reinforcement learning ; Robots ; synergies ; tendon driven control ; Tendons ; Trajectory</subject><ispartof>IEEE/ASME transactions on mechatronics, 2013-04, Vol.18 (2), p.569-577</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-154fe9c347d8ddf1df32c68f36047b8cbc926c0f6305d76da3d7be9153217e783</citedby><cites>FETCH-LOGICAL-c360t-154fe9c347d8ddf1df32c68f36047b8cbc926c0f6305d76da3d7be9153217e783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6341113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6341113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rombokas, E.</creatorcontrib><creatorcontrib>Malhotra, M.</creatorcontrib><creatorcontrib>Theodorou, E. A.</creatorcontrib><creatorcontrib>Todorov, E.</creatorcontrib><creatorcontrib>Matsuoka, Y.</creatorcontrib><title>Reinforcement Learning and Synergistic Control of the ACT Hand</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Tendon-driven systems are ubiquitous in biology and provide considerable advantages for robotic manipulators, but control of these systems is challenging because of the increase in dimensionality and intrinsic nonlinearities. Researchers in biological movement control have suggested that the brain may employ "muscle synergies" to make planning, control, and learning more tractable by expressing the tendon space in a lower dimensional virtual synergistic space. We employ synergies that respect the differing constraints of actuation and sensation, and apply path integral reinforcement learning in the virtual synergistic space as well as the full tendon space. Path integral reinforcement learning has been used successfully on torque-driven systems to learn episodic tasks without using explicit models, which is particularly important for difficult-to-model dynamics like tendon networks and contact transitions. We show that optimizing a small number of trajectories in virtual synergy space can produce comparable performance to optimizing the trajectories of the tendons individually. The six tendons of the index finger and eight tendons of the thumb, each actuating four degrees of joint freedom, are used to slide a switch and turn a knob. The learned control strategies provide a method for discovery of novel task strategies and system phenomena without explicitly modeling the physics of the robot and environment.</description><subject>Aerospace electronics</subject><subject>Biologically inspired control</subject><subject>Joints</subject><subject>Learning</subject><subject>Optimal control</subject><subject>reinforcement learning</subject><subject>Robots</subject><subject>synergies</subject><subject>tendon driven control</subject><subject>Tendons</subject><subject>Trajectory</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKxDAURYMoOI7-gG7yA63vJWmbboShjFaoCFrBXWmTl7Eyk0razfy9HWdw9S68e-7iMHaLECNCfl-_rIsyFoAiFgJzreGMLTBXGAGqz_M5g5aRUjK5ZFfj-A0ACgEX7OGNeu-GYGhHfuIVtcH3fsNbb_n73lPY9OPUG14MfgrDlg-OT1_EV0XNy7lzzS5cux3p5nSX7ONxXRdlVL0-PRerKjIyhSnCRDnKjVSZ1dY6tE4Kk2o3P1XWadOZXKQGXCohsVlqW2mzjnJMpMCMMi2XTBx3TRjGMZBrfkK_a8O-QWgOBpo_A83BQHMyMEN3R6gnon8glQoRpfwF02lW6Q</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Rombokas, E.</creator><creator>Malhotra, M.</creator><creator>Theodorou, E. A.</creator><creator>Todorov, E.</creator><creator>Matsuoka, Y.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Reinforcement Learning and Synergistic Control of the ACT Hand</title><author>Rombokas, E. ; Malhotra, M. ; Theodorou, E. A. ; Todorov, E. ; Matsuoka, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-154fe9c347d8ddf1df32c68f36047b8cbc926c0f6305d76da3d7be9153217e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerospace electronics</topic><topic>Biologically inspired control</topic><topic>Joints</topic><topic>Learning</topic><topic>Optimal control</topic><topic>reinforcement learning</topic><topic>Robots</topic><topic>synergies</topic><topic>tendon driven control</topic><topic>Tendons</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rombokas, E.</creatorcontrib><creatorcontrib>Malhotra, M.</creatorcontrib><creatorcontrib>Theodorou, E. A.</creatorcontrib><creatorcontrib>Todorov, E.</creatorcontrib><creatorcontrib>Matsuoka, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rombokas, E.</au><au>Malhotra, M.</au><au>Theodorou, E. A.</au><au>Todorov, E.</au><au>Matsuoka, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning and Synergistic Control of the ACT Hand</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>18</volume><issue>2</issue><spage>569</spage><epage>577</epage><pages>569-577</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Tendon-driven systems are ubiquitous in biology and provide considerable advantages for robotic manipulators, but control of these systems is challenging because of the increase in dimensionality and intrinsic nonlinearities. Researchers in biological movement control have suggested that the brain may employ "muscle synergies" to make planning, control, and learning more tractable by expressing the tendon space in a lower dimensional virtual synergistic space. We employ synergies that respect the differing constraints of actuation and sensation, and apply path integral reinforcement learning in the virtual synergistic space as well as the full tendon space. Path integral reinforcement learning has been used successfully on torque-driven systems to learn episodic tasks without using explicit models, which is particularly important for difficult-to-model dynamics like tendon networks and contact transitions. We show that optimizing a small number of trajectories in virtual synergy space can produce comparable performance to optimizing the trajectories of the tendons individually. The six tendons of the index finger and eight tendons of the thumb, each actuating four degrees of joint freedom, are used to slide a switch and turn a knob. The learned control strategies provide a method for discovery of novel task strategies and system phenomena without explicitly modeling the physics of the robot and environment.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2012.2219880</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2013-04, Vol.18 (2), p.569-577
issn 1083-4435
1941-014X
language eng
recordid cdi_crossref_primary_10_1109_TMECH_2012_2219880
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Biologically inspired control
Joints
Learning
Optimal control
reinforcement learning
Robots
synergies
tendon driven control
Tendons
Trajectory
title Reinforcement Learning and Synergistic Control of the ACT Hand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning%20and%20Synergistic%20Control%20of%20the%20ACT%20Hand&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Rombokas,%20E.&rft.date=2013-04-01&rft.volume=18&rft.issue=2&rft.spage=569&rft.epage=577&rft.pages=569-577&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2012.2219880&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2012_2219880%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6341113&rfr_iscdi=true