Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles
Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of po...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on mobile computing 2017-05, Vol.16 (5), p.1408-1419 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1419 |
---|---|
container_issue | 5 |
container_start_page | 1408 |
container_title | IEEE transactions on mobile computing |
container_volume | 16 |
creator | Xue, Guangtao Zhu, Hongzi Hu, Zhenxian Yu, Jiadi Zhu, Yanmin Luo, Yuan |
description | Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively. |
doi_str_mv | 10.1109/TMC.2016.2597839 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMC_2016_2597839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7530917</ieee_id><sourcerecordid>1885474486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8-1N6idUXKT1GtLsxE2tuzW7Vfrv3dLqaV6Y552BB6FzSkaUEnM1fR6PckLlKBdGaWYO0IAKoTMiJTncZiYzmjN2jE7adkEI1caoAXotmq5qloBjjbsK8K1LH9e4gOQhfsf6Hf_ti9SEuIQW_8SuwoVLXfRx5bombfAszV2N36CKvidO0VFwyxbO9nOIZvd30_FjNnl5eBrfTDKfG9pljs-dECU1cwE8qJALRnmZB0VKBZp4TmQpy1IbZYLzMhAmDfcsMBLA0NKxIbrc3V2l5msNbWcXzTrV_UtLtRZcca5lT5Ed5VPTtgmCXaX46dLGUmK35mxvzm7N2b25vnKxq0QA-MeVYMRQxX4BYPhp_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1885474486</pqid></control><display><type>magazinearticle</type><title>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</title><source>IEEE Explore</source><creator>Xue, Guangtao ; Zhu, Hongzi ; Hu, Zhenxian ; Yu, Jiadi ; Zhu, Yanmin ; Luo, Yuan</creator><creatorcontrib>Xue, Guangtao ; Zhu, Hongzi ; Hu, Zhenxian ; Yu, Jiadi ; Zhu, Yanmin ; Luo, Yuan</creatorcontrib><description>Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2016.2597839</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>3D accelerometer ; Acceleration ; Ground penetrating radar ; one degree-of-freedom ; Pothole profile perception ; Road conditions ; Roads ; Smart phones ; smartphone ; Smartphones ; Suspension systems ; Three-dimensional displays ; Urban areas ; Vehicles ; Vibrations</subject><ispartof>IEEE transactions on mobile computing, 2017-05, Vol.16 (5), p.1408-1419</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</citedby><cites>FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7530917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7530917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Zhu, Hongzi</creatorcontrib><creatorcontrib>Hu, Zhenxian</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><title>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.</description><subject>3D accelerometer</subject><subject>Acceleration</subject><subject>Ground penetrating radar</subject><subject>one degree-of-freedom</subject><subject>Pothole profile perception</subject><subject>Road conditions</subject><subject>Roads</subject><subject>Smart phones</subject><subject>smartphone</subject><subject>Smartphones</subject><subject>Suspension systems</subject><subject>Three-dimensional displays</subject><subject>Urban areas</subject><subject>Vehicles</subject><subject>Vibrations</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2017</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8-1N6idUXKT1GtLsxE2tuzW7Vfrv3dLqaV6Y552BB6FzSkaUEnM1fR6PckLlKBdGaWYO0IAKoTMiJTncZiYzmjN2jE7adkEI1caoAXotmq5qloBjjbsK8K1LH9e4gOQhfsf6Hf_ti9SEuIQW_8SuwoVLXfRx5bombfAszV2N36CKvidO0VFwyxbO9nOIZvd30_FjNnl5eBrfTDKfG9pljs-dECU1cwE8qJALRnmZB0VKBZp4TmQpy1IbZYLzMhAmDfcsMBLA0NKxIbrc3V2l5msNbWcXzTrV_UtLtRZcca5lT5Ed5VPTtgmCXaX46dLGUmK35mxvzm7N2b25vnKxq0QA-MeVYMRQxX4BYPhp_Q</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Xue, Guangtao</creator><creator>Zhu, Hongzi</creator><creator>Hu, Zhenxian</creator><creator>Yu, Jiadi</creator><creator>Zhu, Yanmin</creator><creator>Luo, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</title><author>Xue, Guangtao ; Zhu, Hongzi ; Hu, Zhenxian ; Yu, Jiadi ; Zhu, Yanmin ; Luo, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D accelerometer</topic><topic>Acceleration</topic><topic>Ground penetrating radar</topic><topic>one degree-of-freedom</topic><topic>Pothole profile perception</topic><topic>Road conditions</topic><topic>Roads</topic><topic>Smart phones</topic><topic>smartphone</topic><topic>Smartphones</topic><topic>Suspension systems</topic><topic>Three-dimensional displays</topic><topic>Urban areas</topic><topic>Vehicles</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Zhu, Hongzi</creatorcontrib><creatorcontrib>Hu, Zhenxian</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Guangtao</au><au>Zhu, Hongzi</au><au>Hu, Zhenxian</au><au>Yu, Jiadi</au><au>Zhu, Yanmin</au><au>Luo, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>16</volume><issue>5</issue><spage>1408</spage><epage>1419</epage><pages>1408-1419</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2016.2597839</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1233 |
ispartof | IEEE transactions on mobile computing, 2017-05, Vol.16 (5), p.1408-1419 |
issn | 1536-1233 1558-0660 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMC_2016_2597839 |
source | IEEE Explore |
subjects | 3D accelerometer Acceleration Ground penetrating radar one degree-of-freedom Pothole profile perception Road conditions Roads Smart phones smartphone Smartphones Suspension systems Three-dimensional displays Urban areas Vehicles Vibrations |
title | Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pothole%20in%20the%20Dark:%20Perceiving%20Pothole%20Profiles%20with%20Participatory%20Urban%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Xue,%20Guangtao&rft.date=2017-05-01&rft.volume=16&rft.issue=5&rft.spage=1408&rft.epage=1419&rft.pages=1408-1419&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2016.2597839&rft_dat=%3Cproquest_RIE%3E1885474486%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885474486&rft_id=info:pmid/&rft_ieee_id=7530917&rfr_iscdi=true |