Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles

Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing 2017-05, Vol.16 (5), p.1408-1419
Hauptverfasser: Xue, Guangtao, Zhu, Hongzi, Hu, Zhenxian, Yu, Jiadi, Zhu, Yanmin, Luo, Yuan
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1419
container_issue 5
container_start_page 1408
container_title IEEE transactions on mobile computing
container_volume 16
creator Xue, Guangtao
Zhu, Hongzi
Hu, Zhenxian
Yu, Jiadi
Zhu, Yanmin
Luo, Yuan
description Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.
doi_str_mv 10.1109/TMC.2016.2597839
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMC_2016_2597839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7530917</ieee_id><sourcerecordid>1885474486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8-1N6idUXKT1GtLsxE2tuzW7Vfrv3dLqaV6Y552BB6FzSkaUEnM1fR6PckLlKBdGaWYO0IAKoTMiJTncZiYzmjN2jE7adkEI1caoAXotmq5qloBjjbsK8K1LH9e4gOQhfsf6Hf_ti9SEuIQW_8SuwoVLXfRx5bombfAszV2N36CKvidO0VFwyxbO9nOIZvd30_FjNnl5eBrfTDKfG9pljs-dECU1cwE8qJALRnmZB0VKBZp4TmQpy1IbZYLzMhAmDfcsMBLA0NKxIbrc3V2l5msNbWcXzTrV_UtLtRZcca5lT5Ed5VPTtgmCXaX46dLGUmK35mxvzm7N2b25vnKxq0QA-MeVYMRQxX4BYPhp_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1885474486</pqid></control><display><type>magazinearticle</type><title>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</title><source>IEEE Explore</source><creator>Xue, Guangtao ; Zhu, Hongzi ; Hu, Zhenxian ; Yu, Jiadi ; Zhu, Yanmin ; Luo, Yuan</creator><creatorcontrib>Xue, Guangtao ; Zhu, Hongzi ; Hu, Zhenxian ; Yu, Jiadi ; Zhu, Yanmin ; Luo, Yuan</creatorcontrib><description>Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2016.2597839</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>3D accelerometer ; Acceleration ; Ground penetrating radar ; one degree-of-freedom ; Pothole profile perception ; Road conditions ; Roads ; Smart phones ; smartphone ; Smartphones ; Suspension systems ; Three-dimensional displays ; Urban areas ; Vehicles ; Vibrations</subject><ispartof>IEEE transactions on mobile computing, 2017-05, Vol.16 (5), p.1408-1419</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</citedby><cites>FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7530917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7530917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Zhu, Hongzi</creatorcontrib><creatorcontrib>Hu, Zhenxian</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><title>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.</description><subject>3D accelerometer</subject><subject>Acceleration</subject><subject>Ground penetrating radar</subject><subject>one degree-of-freedom</subject><subject>Pothole profile perception</subject><subject>Road conditions</subject><subject>Roads</subject><subject>Smart phones</subject><subject>smartphone</subject><subject>Smartphones</subject><subject>Suspension systems</subject><subject>Three-dimensional displays</subject><subject>Urban areas</subject><subject>Vehicles</subject><subject>Vibrations</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2017</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Zk8-1N6idUXKT1GtLsxE2tuzW7Vfrv3dLqaV6Y552BB6FzSkaUEnM1fR6PckLlKBdGaWYO0IAKoTMiJTncZiYzmjN2jE7adkEI1caoAXotmq5qloBjjbsK8K1LH9e4gOQhfsf6Hf_ti9SEuIQW_8SuwoVLXfRx5bombfAszV2N36CKvidO0VFwyxbO9nOIZvd30_FjNnl5eBrfTDKfG9pljs-dECU1cwE8qJALRnmZB0VKBZp4TmQpy1IbZYLzMhAmDfcsMBLA0NKxIbrc3V2l5msNbWcXzTrV_UtLtRZcca5lT5Ed5VPTtgmCXaX46dLGUmK35mxvzm7N2b25vnKxq0QA-MeVYMRQxX4BYPhp_Q</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Xue, Guangtao</creator><creator>Zhu, Hongzi</creator><creator>Hu, Zhenxian</creator><creator>Yu, Jiadi</creator><creator>Zhu, Yanmin</creator><creator>Luo, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</title><author>Xue, Guangtao ; Zhu, Hongzi ; Hu, Zhenxian ; Yu, Jiadi ; Zhu, Yanmin ; Luo, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a4ba55d19b5e4f7f25314d2f70d7e80c406d6dd8979fac6f03694c3f30fe91da3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D accelerometer</topic><topic>Acceleration</topic><topic>Ground penetrating radar</topic><topic>one degree-of-freedom</topic><topic>Pothole profile perception</topic><topic>Road conditions</topic><topic>Roads</topic><topic>Smart phones</topic><topic>smartphone</topic><topic>Smartphones</topic><topic>Suspension systems</topic><topic>Three-dimensional displays</topic><topic>Urban areas</topic><topic>Vehicles</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Zhu, Hongzi</creatorcontrib><creatorcontrib>Hu, Zhenxian</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Guangtao</au><au>Zhu, Hongzi</au><au>Hu, Zhenxian</au><au>Yu, Jiadi</au><au>Zhu, Yanmin</au><au>Luo, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>16</volume><issue>5</issue><spage>1408</spage><epage>1419</epage><pages>1408-1419</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to the public and the government. In this paper, we propose a novel scheme, called P3, which utilizes smartphones placed in normal vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P3-enabled smartphone can actively learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-offreedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P3 shows the potential to derive more accurate results by aggregating individual estimates. In essence, P3 is light-weighted and robust to various conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical feasibility of P3. The results of extensive experiments based on real trace demonstrate the efficacy of the P3 design. On average, P3 can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2016.2597839</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2017-05, Vol.16 (5), p.1408-1419
issn 1536-1233
1558-0660
language eng
recordid cdi_crossref_primary_10_1109_TMC_2016_2597839
source IEEE Explore
subjects 3D accelerometer
Acceleration
Ground penetrating radar
one degree-of-freedom
Pothole profile perception
Road conditions
Roads
Smart phones
smartphone
Smartphones
Suspension systems
Three-dimensional displays
Urban areas
Vehicles
Vibrations
title Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pothole%20in%20the%20Dark:%20Perceiving%20Pothole%20Profiles%20with%20Participatory%20Urban%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Xue,%20Guangtao&rft.date=2017-05-01&rft.volume=16&rft.issue=5&rft.spage=1408&rft.epage=1419&rft.pages=1408-1419&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2016.2597839&rft_dat=%3Cproquest_RIE%3E1885474486%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885474486&rft_id=info:pmid/&rft_ieee_id=7530917&rfr_iscdi=true