Monotone Signal Localization Using Magnetoresistive Sensor Array for Low-Field Magnetic Particle Imaging

Magnetic particle imaging (MPI) demands high sensitivity to be operable under low excitation fields as alternative countermeasure for specific absorption rate and magnetostimulation effects. Owing to capability of magnetoresistive (MR) sensors to unidirectionally detect sub-pT signal, we built a pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1
Hauptverfasser: Trisnanto, Suko Bagus, Kasajima, Tamon, Shibuya, Tomohiko, Takemura, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Trisnanto, Suko Bagus
Kasajima, Tamon
Shibuya, Tomohiko
Takemura, Yasushi
description Magnetic particle imaging (MPI) demands high sensitivity to be operable under low excitation fields as alternative countermeasure for specific absorption rate and magnetostimulation effects. Owing to capability of magnetoresistive (MR) sensors to unidirectionally detect sub-pT signal, we built a prototype of brain MPI scanner by using MR sensor array. The arrays were 13×13 and 5×13 matrices with 15mm sensor pitch and installed orthogonally relative to a 0.2m drive coil. To preliminarily evaluate 10 kHz-signal localization, we used a current loop embedded with 20-turn coils. We then carefully measured pT field at 234 sensor coordinates for 1mA ac current fed to the loop. The resulting field contour was numerically interpolated to identify the actual loop orientation. We found that the loop three-dimensionally rotated along xyz axes with (1.0°, -1.5°, 2.0°) angles from the expected position. To further estimate spatial resolution of the array, we measured magnetic fields from two adjacent point sources of small coils. The corresponding signal separation appeared dependent on the perpendicular distance to the nearest sensor. This fine signal localization of MR sensor array highlights its potential for tracing magnetic nanoparticles in low-field MPI system.
doi_str_mv 10.1109/TMAG.2023.3275541
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2023_3275541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10123128</ieee_id><sourcerecordid>2881503029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5c5601d7a3f836cd715f9ea152c61d24bfced474416b1a36e39f8680d00486e63</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k69mj6VoLWxRsD2HdDe7pmw3Ndkq9deb0h48zQw87wvzIHQPZARA8qflYjIbUULZiNGxEBwu0AByDhkhMr9EA0JAZTmX_BrdxLhJJxdABuhz4Tvf-87iD9d0psWFL03rfk3vfIdX0XUNXpims70PNrrYu--E2i76gCchmAOu01b4n-zF2bY6s67E7yak0Vo835omtdyiq9q00d6d5xCtXp6X09eseJvNp5MiK5kkfSZKIQlUY8NqxWRZjUHUuTUgaCmhonxdl7biY85BrsEwaVleK6lIRQhX0ko2RI-n3l3wX3sbe73x-5A-i5oqBYIwQvNEwYkqg48x2FrvgtuacNBA9FGoPgrVR6H6LDRlHk4ZZ639xwNlQBX7A5r2cgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881503029</pqid></control><display><type>article</type><title>Monotone Signal Localization Using Magnetoresistive Sensor Array for Low-Field Magnetic Particle Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Trisnanto, Suko Bagus ; Kasajima, Tamon ; Shibuya, Tomohiko ; Takemura, Yasushi</creator><creatorcontrib>Trisnanto, Suko Bagus ; Kasajima, Tamon ; Shibuya, Tomohiko ; Takemura, Yasushi</creatorcontrib><description>Magnetic particle imaging (MPI) demands high sensitivity to be operable under low excitation fields as alternative countermeasure for specific absorption rate and magnetostimulation effects. Owing to capability of magnetoresistive (MR) sensors to unidirectionally detect sub-pT signal, we built a prototype of brain MPI scanner by using MR sensor array. The arrays were 13×13 and 5×13 matrices with 15mm sensor pitch and installed orthogonally relative to a 0.2m drive coil. To preliminarily evaluate 10 kHz-signal localization, we used a current loop embedded with 20-turn coils. We then carefully measured pT field at 234 sensor coordinates for 1mA ac current fed to the loop. The resulting field contour was numerically interpolated to identify the actual loop orientation. We found that the loop three-dimensionally rotated along xyz axes with (1.0°, -1.5°, 2.0°) angles from the expected position. To further estimate spatial resolution of the array, we measured magnetic fields from two adjacent point sources of small coils. The corresponding signal separation appeared dependent on the perpendicular distance to the nearest sensor. This fine signal localization of MR sensor array highlights its potential for tracing magnetic nanoparticles in low-field MPI system.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3275541</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Localization ; Magnetic field measurement ; Magnetic fields ; Magnetic particle imaging ; Magnetism ; Magnetometers ; magnetoresistive sensor array ; Magnetoresistivity ; Nanoparticles ; picoTesla field detection ; Position measurement ; Sensitivity ; Sensor arrays ; Sensors ; signal localization ; Signal resolution ; Spatial resolution</subject><ispartof>IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5c5601d7a3f836cd715f9ea152c61d24bfced474416b1a36e39f8680d00486e63</citedby><cites>FETCH-LOGICAL-c360t-5c5601d7a3f836cd715f9ea152c61d24bfced474416b1a36e39f8680d00486e63</cites><orcidid>0000-0002-3440-3460 ; 0000-0003-3680-728X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10123128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10123128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trisnanto, Suko Bagus</creatorcontrib><creatorcontrib>Kasajima, Tamon</creatorcontrib><creatorcontrib>Shibuya, Tomohiko</creatorcontrib><creatorcontrib>Takemura, Yasushi</creatorcontrib><title>Monotone Signal Localization Using Magnetoresistive Sensor Array for Low-Field Magnetic Particle Imaging</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic particle imaging (MPI) demands high sensitivity to be operable under low excitation fields as alternative countermeasure for specific absorption rate and magnetostimulation effects. Owing to capability of magnetoresistive (MR) sensors to unidirectionally detect sub-pT signal, we built a prototype of brain MPI scanner by using MR sensor array. The arrays were 13×13 and 5×13 matrices with 15mm sensor pitch and installed orthogonally relative to a 0.2m drive coil. To preliminarily evaluate 10 kHz-signal localization, we used a current loop embedded with 20-turn coils. We then carefully measured pT field at 234 sensor coordinates for 1mA ac current fed to the loop. The resulting field contour was numerically interpolated to identify the actual loop orientation. We found that the loop three-dimensionally rotated along xyz axes with (1.0°, -1.5°, 2.0°) angles from the expected position. To further estimate spatial resolution of the array, we measured magnetic fields from two adjacent point sources of small coils. The corresponding signal separation appeared dependent on the perpendicular distance to the nearest sensor. This fine signal localization of MR sensor array highlights its potential for tracing magnetic nanoparticles in low-field MPI system.</description><subject>Coils</subject><subject>Localization</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic particle imaging</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>magnetoresistive sensor array</subject><subject>Magnetoresistivity</subject><subject>Nanoparticles</subject><subject>picoTesla field detection</subject><subject>Position measurement</subject><subject>Sensitivity</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>signal localization</subject><subject>Signal resolution</subject><subject>Spatial resolution</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k69mj6VoLWxRsD2HdDe7pmw3Ndkq9deb0h48zQw87wvzIHQPZARA8qflYjIbUULZiNGxEBwu0AByDhkhMr9EA0JAZTmX_BrdxLhJJxdABuhz4Tvf-87iD9d0psWFL03rfk3vfIdX0XUNXpims70PNrrYu--E2i76gCchmAOu01b4n-zF2bY6s67E7yak0Vo835omtdyiq9q00d6d5xCtXp6X09eseJvNp5MiK5kkfSZKIQlUY8NqxWRZjUHUuTUgaCmhonxdl7biY85BrsEwaVleK6lIRQhX0ko2RI-n3l3wX3sbe73x-5A-i5oqBYIwQvNEwYkqg48x2FrvgtuacNBA9FGoPgrVR6H6LDRlHk4ZZ639xwNlQBX7A5r2cgQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Trisnanto, Suko Bagus</creator><creator>Kasajima, Tamon</creator><creator>Shibuya, Tomohiko</creator><creator>Takemura, Yasushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3440-3460</orcidid><orcidid>https://orcid.org/0000-0003-3680-728X</orcidid></search><sort><creationdate>20231101</creationdate><title>Monotone Signal Localization Using Magnetoresistive Sensor Array for Low-Field Magnetic Particle Imaging</title><author>Trisnanto, Suko Bagus ; Kasajima, Tamon ; Shibuya, Tomohiko ; Takemura, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5c5601d7a3f836cd715f9ea152c61d24bfced474416b1a36e39f8680d00486e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coils</topic><topic>Localization</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic particle imaging</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>magnetoresistive sensor array</topic><topic>Magnetoresistivity</topic><topic>Nanoparticles</topic><topic>picoTesla field detection</topic><topic>Position measurement</topic><topic>Sensitivity</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>signal localization</topic><topic>Signal resolution</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Trisnanto, Suko Bagus</creatorcontrib><creatorcontrib>Kasajima, Tamon</creatorcontrib><creatorcontrib>Shibuya, Tomohiko</creatorcontrib><creatorcontrib>Takemura, Yasushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trisnanto, Suko Bagus</au><au>Kasajima, Tamon</au><au>Shibuya, Tomohiko</au><au>Takemura, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone Signal Localization Using Magnetoresistive Sensor Array for Low-Field Magnetic Particle Imaging</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic particle imaging (MPI) demands high sensitivity to be operable under low excitation fields as alternative countermeasure for specific absorption rate and magnetostimulation effects. Owing to capability of magnetoresistive (MR) sensors to unidirectionally detect sub-pT signal, we built a prototype of brain MPI scanner by using MR sensor array. The arrays were 13×13 and 5×13 matrices with 15mm sensor pitch and installed orthogonally relative to a 0.2m drive coil. To preliminarily evaluate 10 kHz-signal localization, we used a current loop embedded with 20-turn coils. We then carefully measured pT field at 234 sensor coordinates for 1mA ac current fed to the loop. The resulting field contour was numerically interpolated to identify the actual loop orientation. We found that the loop three-dimensionally rotated along xyz axes with (1.0°, -1.5°, 2.0°) angles from the expected position. To further estimate spatial resolution of the array, we measured magnetic fields from two adjacent point sources of small coils. The corresponding signal separation appeared dependent on the perpendicular distance to the nearest sensor. This fine signal localization of MR sensor array highlights its potential for tracing magnetic nanoparticles in low-field MPI system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3275541</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3440-3460</orcidid><orcidid>https://orcid.org/0000-0003-3680-728X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2023_3275541
source IEEE Electronic Library (IEL)
subjects Coils
Localization
Magnetic field measurement
Magnetic fields
Magnetic particle imaging
Magnetism
Magnetometers
magnetoresistive sensor array
Magnetoresistivity
Nanoparticles
picoTesla field detection
Position measurement
Sensitivity
Sensor arrays
Sensors
signal localization
Signal resolution
Spatial resolution
title Monotone Signal Localization Using Magnetoresistive Sensor Array for Low-Field Magnetic Particle Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20Signal%20Localization%20Using%20Magnetoresistive%20Sensor%20Array%20for%20Low-Field%20Magnetic%20Particle%20Imaging&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Trisnanto,%20Suko%20Bagus&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3275541&rft_dat=%3Cproquest_RIE%3E2881503029%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881503029&rft_id=info:pmid/&rft_ieee_id=10123128&rfr_iscdi=true