Numerical Characterization of Magnetic Vortex Probe Imaging for Magnetic Force Microscopy

We study theoretically the performance and limitations of the magnetic vortex probe for magnetic force microscopy (MFM). In the ideal case, the only magnetically active part of the probe is the magnetic vortex core (VC) existing in the center of a Permalloy (Py) disk located at the apex of a non-mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-06, Vol.59 (6), p.1-1
Hauptverfasser: Feilhauer, Juraj, Tobik, Jaroslav, Soltys, Jan, Cambel, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Feilhauer, Juraj
Tobik, Jaroslav
Soltys, Jan
Cambel, Vladimir
description We study theoretically the performance and limitations of the magnetic vortex probe for magnetic force microscopy (MFM). In the ideal case, the only magnetically active part of the probe is the magnetic vortex core (VC) existing in the center of a Permalloy (Py) disk located at the apex of a non-magnetic tip. Such VC can be effectively characterized as a point dipole with the magnetic moment of the order of 10 -17 Am 2 embedded about 20 nm inside the disk, which is similar to the commercial low-momentum MFM probes. In addition to the standard probes, the ideal VC probe offers high durability and a well-controlled magnetic moment suitable for quantitative MFM. However, since the VC probe is made of magnetically soft material its magnetization profile and the resulting MFM image can be deformed by the stray field of the sample. Therefore, the VC probe is suited for imaging the samples with small domain sizes which generate low stray fields. We numerically examine VC imaging of typical magnetic samples, i.e. domain arranged as a single circular dot, stripe patterns, and the chessboard. We determine the limiting dimensions of the domains that can be correctly imaged by the VC tip of optimal parameters. In general, we can conclude that MFM imaging by VC probes gives reasonable results for the samples with domains with lateral dimensions up to 100 nm.
doi_str_mv 10.1109/TMAG.2023.3260975
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2023_3260975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10078919</ieee_id><sourcerecordid>2818372034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-e59637ad291fee810ae308b8c3b6e54c563d428931834d38f2dde735f21b14233</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcPIHgR8LozJ0nb5HIMNwebejEFr0Kans6OrZlpC86nt2UDvTr88P3nHD5CboGNAJh-WC3HsxFnXIwET5hO4zMyAC0hYizR52TAGKhIy0Rekqu63nRRxsAG5OO53WEond3SyacN1jVd-rFN6SvqC7q06wqb0tF3Hxr8pq_BZ0jnO7suqzUtfPgjpj44pMvSBV87vz9ck4vCbmu8Oc0heZs-riZP0eJlNp-MF5HjWjYRxjoRqc25hgJRAbMomMqUE1mCsXRxInLJlRaghMyFKnieYyrigkMGkgsxJPfHvfvgv1qsG7Pxbai6k4arrpRyJmRHwZHq36sDFmYfyp0NBwPM9AZNb9D0Bs3JYNe5O3ZKRPzHs1Rp0OIXrnRsUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818372034</pqid></control><display><type>article</type><title>Numerical Characterization of Magnetic Vortex Probe Imaging for Magnetic Force Microscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Feilhauer, Juraj ; Tobik, Jaroslav ; Soltys, Jan ; Cambel, Vladimir</creator><creatorcontrib>Feilhauer, Juraj ; Tobik, Jaroslav ; Soltys, Jan ; Cambel, Vladimir</creatorcontrib><description>We study theoretically the performance and limitations of the magnetic vortex probe for magnetic force microscopy (MFM). In the ideal case, the only magnetically active part of the probe is the magnetic vortex core (VC) existing in the center of a Permalloy (Py) disk located at the apex of a non-magnetic tip. Such VC can be effectively characterized as a point dipole with the magnetic moment of the order of 10 -17 Am 2 embedded about 20 nm inside the disk, which is similar to the commercial low-momentum MFM probes. In addition to the standard probes, the ideal VC probe offers high durability and a well-controlled magnetic moment suitable for quantitative MFM. However, since the VC probe is made of magnetically soft material its magnetization profile and the resulting MFM image can be deformed by the stray field of the sample. Therefore, the VC probe is suited for imaging the samples with small domain sizes which generate low stray fields. We numerically examine VC imaging of typical magnetic samples, i.e. domain arranged as a single circular dot, stripe patterns, and the chessboard. We determine the limiting dimensions of the domains that can be correctly imaged by the VC tip of optimal parameters. In general, we can conclude that MFM imaging by VC probes gives reasonable results for the samples with domains with lateral dimensions up to 100 nm.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3260975</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Dipole moments ; Domains ; Ferrous alloys ; Imaging ; Magnetic alloys ; Magnetic cores ; Magnetic domains ; Magnetic force microscopy ; Magnetic moments ; Magnetic resonance imaging ; Magnetism ; Magnetization ; Magnetostatics ; Microscopy ; Probes ; Soft magnetic materials ; Vortices</subject><ispartof>IEEE transactions on magnetics, 2023-06, Vol.59 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-e59637ad291fee810ae308b8c3b6e54c563d428931834d38f2dde735f21b14233</citedby><cites>FETCH-LOGICAL-c294t-e59637ad291fee810ae308b8c3b6e54c563d428931834d38f2dde735f21b14233</cites><orcidid>0000-0001-6547-2226 ; 0000-0003-4135-8554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10078919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10078919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feilhauer, Juraj</creatorcontrib><creatorcontrib>Tobik, Jaroslav</creatorcontrib><creatorcontrib>Soltys, Jan</creatorcontrib><creatorcontrib>Cambel, Vladimir</creatorcontrib><title>Numerical Characterization of Magnetic Vortex Probe Imaging for Magnetic Force Microscopy</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We study theoretically the performance and limitations of the magnetic vortex probe for magnetic force microscopy (MFM). In the ideal case, the only magnetically active part of the probe is the magnetic vortex core (VC) existing in the center of a Permalloy (Py) disk located at the apex of a non-magnetic tip. Such VC can be effectively characterized as a point dipole with the magnetic moment of the order of 10 -17 Am 2 embedded about 20 nm inside the disk, which is similar to the commercial low-momentum MFM probes. In addition to the standard probes, the ideal VC probe offers high durability and a well-controlled magnetic moment suitable for quantitative MFM. However, since the VC probe is made of magnetically soft material its magnetization profile and the resulting MFM image can be deformed by the stray field of the sample. Therefore, the VC probe is suited for imaging the samples with small domain sizes which generate low stray fields. We numerically examine VC imaging of typical magnetic samples, i.e. domain arranged as a single circular dot, stripe patterns, and the chessboard. We determine the limiting dimensions of the domains that can be correctly imaged by the VC tip of optimal parameters. In general, we can conclude that MFM imaging by VC probes gives reasonable results for the samples with domains with lateral dimensions up to 100 nm.</description><subject>Dipole moments</subject><subject>Domains</subject><subject>Ferrous alloys</subject><subject>Imaging</subject><subject>Magnetic alloys</subject><subject>Magnetic cores</subject><subject>Magnetic domains</subject><subject>Magnetic force microscopy</subject><subject>Magnetic moments</subject><subject>Magnetic resonance imaging</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetostatics</subject><subject>Microscopy</subject><subject>Probes</subject><subject>Soft magnetic materials</subject><subject>Vortices</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOKcPIHgR8LozJ0nb5HIMNwebejEFr0Kans6OrZlpC86nt2UDvTr88P3nHD5CboGNAJh-WC3HsxFnXIwET5hO4zMyAC0hYizR52TAGKhIy0Rekqu63nRRxsAG5OO53WEond3SyacN1jVd-rFN6SvqC7q06wqb0tF3Hxr8pq_BZ0jnO7suqzUtfPgjpj44pMvSBV87vz9ck4vCbmu8Oc0heZs-riZP0eJlNp-MF5HjWjYRxjoRqc25hgJRAbMomMqUE1mCsXRxInLJlRaghMyFKnieYyrigkMGkgsxJPfHvfvgv1qsG7Pxbai6k4arrpRyJmRHwZHq36sDFmYfyp0NBwPM9AZNb9D0Bs3JYNe5O3ZKRPzHs1Rp0OIXrnRsUw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Feilhauer, Juraj</creator><creator>Tobik, Jaroslav</creator><creator>Soltys, Jan</creator><creator>Cambel, Vladimir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6547-2226</orcidid><orcidid>https://orcid.org/0000-0003-4135-8554</orcidid></search><sort><creationdate>20230601</creationdate><title>Numerical Characterization of Magnetic Vortex Probe Imaging for Magnetic Force Microscopy</title><author>Feilhauer, Juraj ; Tobik, Jaroslav ; Soltys, Jan ; Cambel, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-e59637ad291fee810ae308b8c3b6e54c563d428931834d38f2dde735f21b14233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dipole moments</topic><topic>Domains</topic><topic>Ferrous alloys</topic><topic>Imaging</topic><topic>Magnetic alloys</topic><topic>Magnetic cores</topic><topic>Magnetic domains</topic><topic>Magnetic force microscopy</topic><topic>Magnetic moments</topic><topic>Magnetic resonance imaging</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetostatics</topic><topic>Microscopy</topic><topic>Probes</topic><topic>Soft magnetic materials</topic><topic>Vortices</topic><toplevel>online_resources</toplevel><creatorcontrib>Feilhauer, Juraj</creatorcontrib><creatorcontrib>Tobik, Jaroslav</creatorcontrib><creatorcontrib>Soltys, Jan</creatorcontrib><creatorcontrib>Cambel, Vladimir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feilhauer, Juraj</au><au>Tobik, Jaroslav</au><au>Soltys, Jan</au><au>Cambel, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Characterization of Magnetic Vortex Probe Imaging for Magnetic Force Microscopy</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We study theoretically the performance and limitations of the magnetic vortex probe for magnetic force microscopy (MFM). In the ideal case, the only magnetically active part of the probe is the magnetic vortex core (VC) existing in the center of a Permalloy (Py) disk located at the apex of a non-magnetic tip. Such VC can be effectively characterized as a point dipole with the magnetic moment of the order of 10 -17 Am 2 embedded about 20 nm inside the disk, which is similar to the commercial low-momentum MFM probes. In addition to the standard probes, the ideal VC probe offers high durability and a well-controlled magnetic moment suitable for quantitative MFM. However, since the VC probe is made of magnetically soft material its magnetization profile and the resulting MFM image can be deformed by the stray field of the sample. Therefore, the VC probe is suited for imaging the samples with small domain sizes which generate low stray fields. We numerically examine VC imaging of typical magnetic samples, i.e. domain arranged as a single circular dot, stripe patterns, and the chessboard. We determine the limiting dimensions of the domains that can be correctly imaged by the VC tip of optimal parameters. In general, we can conclude that MFM imaging by VC probes gives reasonable results for the samples with domains with lateral dimensions up to 100 nm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3260975</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6547-2226</orcidid><orcidid>https://orcid.org/0000-0003-4135-8554</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-06, Vol.59 (6), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2023_3260975
source IEEE Electronic Library (IEL)
subjects Dipole moments
Domains
Ferrous alloys
Imaging
Magnetic alloys
Magnetic cores
Magnetic domains
Magnetic force microscopy
Magnetic moments
Magnetic resonance imaging
Magnetism
Magnetization
Magnetostatics
Microscopy
Probes
Soft magnetic materials
Vortices
title Numerical Characterization of Magnetic Vortex Probe Imaging for Magnetic Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Characterization%20of%20Magnetic%20Vortex%20Probe%20Imaging%20for%20Magnetic%20Force%20Microscopy&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Feilhauer,%20Juraj&rft.date=2023-06-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3260975&rft_dat=%3Cproquest_RIE%3E2818372034%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818372034&rft_id=info:pmid/&rft_ieee_id=10078919&rfr_iscdi=true