Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks with Dropout

This study proposes a novel topology optimization (TO) method for permanent magnet (PM) motors based on a variational autoencoder (VAE) and a neural network (NN). The VAE is trained to embed various shapes generated from the TO into the latent space. The NN is trained to predict the characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-05, Vol.59 (5), p.1-1
Hauptverfasser: Sato, Hayaho, Igarashi, Hajime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Sato, Hayaho
Igarashi, Hajime
description This study proposes a novel topology optimization (TO) method for permanent magnet (PM) motors based on a variational autoencoder (VAE) and a neural network (NN). The VAE is trained to embed various shapes generated from the TO into the latent space. The NN is trained to predict the characteristics of the PM motor from its latent representation derived using the VAE. After training, TO is performed in the latent space based on the prediction using the NN. We adopt the Monte Carlo dropout to maintain prediction reliability using the NN during optimization, where prediction deviation is evaluated and used to eliminate unreliable solutions. The proposed method yields Pareto solutions within 80 s in a single-thread CPU machine, which is considerably faster than numerical analysis-based optimization, such as finite element analysis.
doi_str_mv 10.1109/TMAG.2023.3242288
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2023_3242288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036443</ieee_id><sourcerecordid>2806217198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3d670d50966e1b527baae41cdd873d7247337c880156f8ac0397570937efe7b3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9mv7cSQqaMKHh9VrU3a7WIQttt0Q_PUuwsHTZGaedzJ5ALjFaIAxUg_FdDgeEETogBJGiJRnoIcVwxlCXJ2DHkJYZopxdgmuYlx1Lcsx6oHlyMQEC7_1a7_cw_k2uY37Mcn5BtY-wLcpnPrkQ4Tv0TVL-GGC-9uaNRy2ydum9JUN0DQVnNk2dOOZTTsfviLcufQJn0J3u03X4KI262hvTrUPitFz8fiSTebj18fhJCspFSmjFReoypHi3OJFTsTCGMtwWVVS0EoQJjqslBLhnNfSlIgqkQukqLC1FQvaB_fHs9vgv1sbk175NnTPRk0k4gQLrGRH4SNVBh9jsLXeBrcxYa8x0ged-qBTH3Tqk84uc3fMOGvtPx5Rzhilv5JKcWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806217198</pqid></control><display><type>article</type><title>Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks with Dropout</title><source>IEEE Electronic Library (IEL)</source><creator>Sato, Hayaho ; Igarashi, Hajime</creator><creatorcontrib>Sato, Hayaho ; Igarashi, Hajime</creatorcontrib><description>This study proposes a novel topology optimization (TO) method for permanent magnet (PM) motors based on a variational autoencoder (VAE) and a neural network (NN). The VAE is trained to embed various shapes generated from the TO into the latent space. The NN is trained to predict the characteristics of the PM motor from its latent representation derived using the VAE. After training, TO is performed in the latent space based on the prediction using the NN. We adopt the Monte Carlo dropout to maintain prediction reliability using the NN during optimization, where prediction deviation is evaluated and used to eliminate unreliable solutions. The proposed method yields Pareto solutions within 80 s in a single-thread CPU machine, which is considerably faster than numerical analysis-based optimization, such as finite element analysis.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3242288</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Finite element method ; Magnetism ; Motors ; Network topologies ; Neural networks ; Numerical analysis ; permanent magnet (PM) motors ; Permanent magnets ; Topology optimization</subject><ispartof>IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3d670d50966e1b527baae41cdd873d7247337c880156f8ac0397570937efe7b3</citedby><cites>FETCH-LOGICAL-c337t-3d670d50966e1b527baae41cdd873d7247337c880156f8ac0397570937efe7b3</cites><orcidid>0000-0003-4330-236X ; 0000-0002-0852-3231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10036443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sato, Hayaho</creatorcontrib><creatorcontrib>Igarashi, Hajime</creatorcontrib><title>Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks with Dropout</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This study proposes a novel topology optimization (TO) method for permanent magnet (PM) motors based on a variational autoencoder (VAE) and a neural network (NN). The VAE is trained to embed various shapes generated from the TO into the latent space. The NN is trained to predict the characteristics of the PM motor from its latent representation derived using the VAE. After training, TO is performed in the latent space based on the prediction using the NN. We adopt the Monte Carlo dropout to maintain prediction reliability using the NN during optimization, where prediction deviation is evaluated and used to eliminate unreliable solutions. The proposed method yields Pareto solutions within 80 s in a single-thread CPU machine, which is considerably faster than numerical analysis-based optimization, such as finite element analysis.</description><subject>Design optimization</subject><subject>Finite element method</subject><subject>Magnetism</subject><subject>Motors</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>permanent magnet (PM) motors</subject><subject>Permanent magnets</subject><subject>Topology optimization</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9mv7cSQqaMKHh9VrU3a7WIQttt0Q_PUuwsHTZGaedzJ5ALjFaIAxUg_FdDgeEETogBJGiJRnoIcVwxlCXJ2DHkJYZopxdgmuYlx1Lcsx6oHlyMQEC7_1a7_cw_k2uY37Mcn5BtY-wLcpnPrkQ4Tv0TVL-GGC-9uaNRy2ydum9JUN0DQVnNk2dOOZTTsfviLcufQJn0J3u03X4KI262hvTrUPitFz8fiSTebj18fhJCspFSmjFReoypHi3OJFTsTCGMtwWVVS0EoQJjqslBLhnNfSlIgqkQukqLC1FQvaB_fHs9vgv1sbk175NnTPRk0k4gQLrGRH4SNVBh9jsLXeBrcxYa8x0ged-qBTH3Tqk84uc3fMOGvtPx5Rzhilv5JKcWI</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Sato, Hayaho</creator><creator>Igarashi, Hajime</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4330-236X</orcidid><orcidid>https://orcid.org/0000-0002-0852-3231</orcidid></search><sort><creationdate>20230501</creationdate><title>Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks with Dropout</title><author>Sato, Hayaho ; Igarashi, Hajime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3d670d50966e1b527baae41cdd873d7247337c880156f8ac0397570937efe7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Finite element method</topic><topic>Magnetism</topic><topic>Motors</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>permanent magnet (PM) motors</topic><topic>Permanent magnets</topic><topic>Topology optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Sato, Hayaho</creatorcontrib><creatorcontrib>Igarashi, Hajime</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sato, Hayaho</au><au>Igarashi, Hajime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks with Dropout</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>59</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This study proposes a novel topology optimization (TO) method for permanent magnet (PM) motors based on a variational autoencoder (VAE) and a neural network (NN). The VAE is trained to embed various shapes generated from the TO into the latent space. The NN is trained to predict the characteristics of the PM motor from its latent representation derived using the VAE. After training, TO is performed in the latent space based on the prediction using the NN. We adopt the Monte Carlo dropout to maintain prediction reliability using the NN during optimization, where prediction deviation is evaluated and used to eliminate unreliable solutions. The proposed method yields Pareto solutions within 80 s in a single-thread CPU machine, which is considerably faster than numerical analysis-based optimization, such as finite element analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3242288</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4330-236X</orcidid><orcidid>https://orcid.org/0000-0002-0852-3231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-05, Vol.59 (5), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2023_3242288
source IEEE Electronic Library (IEL)
subjects Design optimization
Finite element method
Magnetism
Motors
Network topologies
Neural networks
Numerical analysis
permanent magnet (PM) motors
Permanent magnets
Topology optimization
title Fast Topology Optimization for PM Motors Using Variational Autoencoder and Neural Networks with Dropout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Topology%20Optimization%20for%20PM%20Motors%20Using%20Variational%20Autoencoder%20and%20Neural%20Networks%20with%20Dropout&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Sato,%20Hayaho&rft.date=2023-05-01&rft.volume=59&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3242288&rft_dat=%3Cproquest_RIE%3E2806217198%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806217198&rft_id=info:pmid/&rft_ieee_id=10036443&rfr_iscdi=true