Second Phases' Distribution of FeCoNiSi High-Entropy Alloy Solidified Under High Pressure and Its Effect on Magnetic Properties

The phase evolution and magnetic properties of FeCoNiSi high-entropy alloy prepared by high-pressure solidification were investigated. The results showed that the Ni-rich second phases (SPs), dispersed in the FeCoNiSi alloy matrix during the initial application of 0.1 MPa solidification pressure, ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-06, Vol.59 (6), p.1-7
Hauptverfasser: Chang, T., Zou, C. M., Zhu, D. D., Wang, X. H., Wei, Z. J., Wang, H. W., Fang, N., Chen, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 6
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Chang, T.
Zou, C. M.
Zhu, D. D.
Wang, X. H.
Wei, Z. J.
Wang, H. W.
Fang, N.
Chen, J. H.
description The phase evolution and magnetic properties of FeCoNiSi high-entropy alloy prepared by high-pressure solidification were investigated. The results showed that the Ni-rich second phases (SPs), dispersed in the FeCoNiSi alloy matrix during the initial application of 0.1 MPa solidification pressure, aggregated as the pressure was further increased. In addition, we observed an increase in saturation magnetization M_{s} (from 77 to 86 emu/g) and a decrease in the intrinsic coercivity H_{\mathbf {MC}} (from 75 to 49 Oe) when the alloy solidification pressure increased from 0.1 MPa to 7 GPa. Based on the micromagnetic calculations, the dispersed SPs separate the continuous magnetic moment in the matrix and delay the magnetization process. The reversed domain is prone to nucleate at the interface of the SPs and matrix due to its low domain wall energy and demagnetization energy during magnetization. Therefore, the dispersed SPs demonstrate a pinning effect on magnetic domains in the matrix compared with aggregated SPs.
doi_str_mv 10.1109/TMAG.2022.3232722
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2022_3232722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999660</ieee_id><sourcerecordid>2818371908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1378589ba99980f9e282f4aa486218c5439323bb9f5c067efe59e2dcf0d709d33</originalsourceid><addsrcrecordid>eNo9kEtPAjEQxxujiYh-AOOliQdPi33soz0S5JWIkgDnzT6mUILbte0eOPnVLUI8TSb5zX9mfgg9UjKglMjX9WI4HTDC2IAzzjLGrlCPyphGhKTyGvUIoSKScRrfojvn9qGNE0p66GcFlWlqvNwVDtwLftPOW112XpsGG4UnMDIfeqXxTG930bjx1rRHPDwczBGvzEHXWmmo8aapwf4xeGnBuc4CLkLs3Ds8Vgoqj0Peotg24HUVGNOC9RrcPbpRxcHBw6X20WYyXo9m0fvndD4avkcVixMfUZ6JRMiykFIKoiQwwVRcFLFIGRVVEnMZ_i5LqZKKpBkoSAJTV4rUGZE15330fM5trfnuwPl8bzrbhJU5E1TwjEoiAkXPVGWNcxZU3lr9VdhjTkl-8pyfPOcnz_nFc5h5Os9oAPjnw50yTQn_Bc-AeRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818371908</pqid></control><display><type>article</type><title>Second Phases' Distribution of FeCoNiSi High-Entropy Alloy Solidified Under High Pressure and Its Effect on Magnetic Properties</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, T. ; Zou, C. M. ; Zhu, D. D. ; Wang, X. H. ; Wei, Z. J. ; Wang, H. W. ; Fang, N. ; Chen, J. H.</creator><creatorcontrib>Chang, T. ; Zou, C. M. ; Zhu, D. D. ; Wang, X. H. ; Wei, Z. J. ; Wang, H. W. ; Fang, N. ; Chen, J. H.</creatorcontrib><description><![CDATA[The phase evolution and magnetic properties of FeCoNiSi high-entropy alloy prepared by high-pressure solidification were investigated. The results showed that the Ni-rich second phases (SPs), dispersed in the FeCoNiSi alloy matrix during the initial application of 0.1 MPa solidification pressure, aggregated as the pressure was further increased. In addition, we observed an increase in saturation magnetization <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> (from 77 to 86 emu/g) and a decrease in the intrinsic coercivity <inline-formula> <tex-math notation="LaTeX">H_{\mathbf {MC}} </tex-math></inline-formula> (from 75 to 49 Oe) when the alloy solidification pressure increased from 0.1 MPa to 7 GPa. Based on the micromagnetic calculations, the dispersed SPs separate the continuous magnetic moment in the matrix and delay the magnetization process. The reversed domain is prone to nucleate at the interface of the SPs and matrix due to its low domain wall energy and demagnetization energy during magnetization. Therefore, the dispersed SPs demonstrate a pinning effect on magnetic domains in the matrix compared with aggregated SPs.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2022.3232722</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alloy solidification ; Coercivity ; Dispersion ; Domain walls ; High entropy alloys ; High pressure ; High-entropy alloys (HEAs) ; high-pressure solidification (HPS) ; Magnetic domain walls ; Magnetic domains ; magnetic materials ; Magnetic moments ; Magnetic properties ; Magnetic saturation ; Magnetism ; Magnetization ; Metals ; Micromagnetics ; Pressure effects ; Saturation magnetization ; simulation and modeling ; Solidification</subject><ispartof>IEEE transactions on magnetics, 2023-06, Vol.59 (6), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-1378589ba99980f9e282f4aa486218c5439323bb9f5c067efe59e2dcf0d709d33</cites><orcidid>0000-0002-5459-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9999660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang, T.</creatorcontrib><creatorcontrib>Zou, C. M.</creatorcontrib><creatorcontrib>Zhu, D. D.</creatorcontrib><creatorcontrib>Wang, X. H.</creatorcontrib><creatorcontrib>Wei, Z. J.</creatorcontrib><creatorcontrib>Wang, H. W.</creatorcontrib><creatorcontrib>Fang, N.</creatorcontrib><creatorcontrib>Chen, J. H.</creatorcontrib><title>Second Phases' Distribution of FeCoNiSi High-Entropy Alloy Solidified Under High Pressure and Its Effect on Magnetic Properties</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[The phase evolution and magnetic properties of FeCoNiSi high-entropy alloy prepared by high-pressure solidification were investigated. The results showed that the Ni-rich second phases (SPs), dispersed in the FeCoNiSi alloy matrix during the initial application of 0.1 MPa solidification pressure, aggregated as the pressure was further increased. In addition, we observed an increase in saturation magnetization <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> (from 77 to 86 emu/g) and a decrease in the intrinsic coercivity <inline-formula> <tex-math notation="LaTeX">H_{\mathbf {MC}} </tex-math></inline-formula> (from 75 to 49 Oe) when the alloy solidification pressure increased from 0.1 MPa to 7 GPa. Based on the micromagnetic calculations, the dispersed SPs separate the continuous magnetic moment in the matrix and delay the magnetization process. The reversed domain is prone to nucleate at the interface of the SPs and matrix due to its low domain wall energy and demagnetization energy during magnetization. Therefore, the dispersed SPs demonstrate a pinning effect on magnetic domains in the matrix compared with aggregated SPs.]]></description><subject>Alloy solidification</subject><subject>Coercivity</subject><subject>Dispersion</subject><subject>Domain walls</subject><subject>High entropy alloys</subject><subject>High pressure</subject><subject>High-entropy alloys (HEAs)</subject><subject>high-pressure solidification (HPS)</subject><subject>Magnetic domain walls</subject><subject>Magnetic domains</subject><subject>magnetic materials</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Metals</subject><subject>Micromagnetics</subject><subject>Pressure effects</subject><subject>Saturation magnetization</subject><subject>simulation and modeling</subject><subject>Solidification</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEQxxujiYh-AOOliQdPi33soz0S5JWIkgDnzT6mUILbte0eOPnVLUI8TSb5zX9mfgg9UjKglMjX9WI4HTDC2IAzzjLGrlCPyphGhKTyGvUIoSKScRrfojvn9qGNE0p66GcFlWlqvNwVDtwLftPOW112XpsGG4UnMDIfeqXxTG930bjx1rRHPDwczBGvzEHXWmmo8aapwf4xeGnBuc4CLkLs3Ds8Vgoqj0Peotg24HUVGNOC9RrcPbpRxcHBw6X20WYyXo9m0fvndD4avkcVixMfUZ6JRMiykFIKoiQwwVRcFLFIGRVVEnMZ_i5LqZKKpBkoSAJTV4rUGZE15330fM5trfnuwPl8bzrbhJU5E1TwjEoiAkXPVGWNcxZU3lr9VdhjTkl-8pyfPOcnz_nFc5h5Os9oAPjnw50yTQn_Bc-AeRo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chang, T.</creator><creator>Zou, C. M.</creator><creator>Zhu, D. D.</creator><creator>Wang, X. H.</creator><creator>Wei, Z. J.</creator><creator>Wang, H. W.</creator><creator>Fang, N.</creator><creator>Chen, J. H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5459-3978</orcidid></search><sort><creationdate>20230601</creationdate><title>Second Phases' Distribution of FeCoNiSi High-Entropy Alloy Solidified Under High Pressure and Its Effect on Magnetic Properties</title><author>Chang, T. ; Zou, C. M. ; Zhu, D. D. ; Wang, X. H. ; Wei, Z. J. ; Wang, H. W. ; Fang, N. ; Chen, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1378589ba99980f9e282f4aa486218c5439323bb9f5c067efe59e2dcf0d709d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloy solidification</topic><topic>Coercivity</topic><topic>Dispersion</topic><topic>Domain walls</topic><topic>High entropy alloys</topic><topic>High pressure</topic><topic>High-entropy alloys (HEAs)</topic><topic>high-pressure solidification (HPS)</topic><topic>Magnetic domain walls</topic><topic>Magnetic domains</topic><topic>magnetic materials</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Metals</topic><topic>Micromagnetics</topic><topic>Pressure effects</topic><topic>Saturation magnetization</topic><topic>simulation and modeling</topic><topic>Solidification</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang, T.</creatorcontrib><creatorcontrib>Zou, C. M.</creatorcontrib><creatorcontrib>Zhu, D. D.</creatorcontrib><creatorcontrib>Wang, X. H.</creatorcontrib><creatorcontrib>Wei, Z. J.</creatorcontrib><creatorcontrib>Wang, H. W.</creatorcontrib><creatorcontrib>Fang, N.</creatorcontrib><creatorcontrib>Chen, J. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, T.</au><au>Zou, C. M.</au><au>Zhu, D. D.</au><au>Wang, X. H.</au><au>Wei, Z. J.</au><au>Wang, H. W.</au><au>Fang, N.</au><au>Chen, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second Phases' Distribution of FeCoNiSi High-Entropy Alloy Solidified Under High Pressure and Its Effect on Magnetic Properties</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[The phase evolution and magnetic properties of FeCoNiSi high-entropy alloy prepared by high-pressure solidification were investigated. The results showed that the Ni-rich second phases (SPs), dispersed in the FeCoNiSi alloy matrix during the initial application of 0.1 MPa solidification pressure, aggregated as the pressure was further increased. In addition, we observed an increase in saturation magnetization <inline-formula> <tex-math notation="LaTeX">M_{s} </tex-math></inline-formula> (from 77 to 86 emu/g) and a decrease in the intrinsic coercivity <inline-formula> <tex-math notation="LaTeX">H_{\mathbf {MC}} </tex-math></inline-formula> (from 75 to 49 Oe) when the alloy solidification pressure increased from 0.1 MPa to 7 GPa. Based on the micromagnetic calculations, the dispersed SPs separate the continuous magnetic moment in the matrix and delay the magnetization process. The reversed domain is prone to nucleate at the interface of the SPs and matrix due to its low domain wall energy and demagnetization energy during magnetization. Therefore, the dispersed SPs demonstrate a pinning effect on magnetic domains in the matrix compared with aggregated SPs.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2022.3232722</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5459-3978</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-06, Vol.59 (6), p.1-7
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2022_3232722
source IEEE Electronic Library (IEL)
subjects Alloy solidification
Coercivity
Dispersion
Domain walls
High entropy alloys
High pressure
High-entropy alloys (HEAs)
high-pressure solidification (HPS)
Magnetic domain walls
Magnetic domains
magnetic materials
Magnetic moments
Magnetic properties
Magnetic saturation
Magnetism
Magnetization
Metals
Micromagnetics
Pressure effects
Saturation magnetization
simulation and modeling
Solidification
title Second Phases' Distribution of FeCoNiSi High-Entropy Alloy Solidified Under High Pressure and Its Effect on Magnetic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20Phases'%20Distribution%20of%20FeCoNiSi%20High-Entropy%20Alloy%20Solidified%20Under%20High%20Pressure%20and%20Its%20Effect%20on%20Magnetic%20Properties&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Chang,%20T.&rft.date=2023-06-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2022.3232722&rft_dat=%3Cproquest_RIE%3E2818371908%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818371908&rft_id=info:pmid/&rft_ieee_id=9999660&rfr_iscdi=true