The Damage Analysis for Irradiation Tolerant Spin-Driven Thermoelectric Device Based on Single-Crystalline Y₃Fe₅O₁₂/Pt Heterostructures
Spin-driven thermoelectric (STE) generation based on the combination of the spin Seebeck effect (SSE) and inverse spin Hall effect is an alternative to conventional semiconductor-based thermocouples as it is large scale, low cost, and environment-friendly. The STE device is thought to be radiation h...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2022-08, Vol.58 (8), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spin-driven thermoelectric (STE) generation based on the combination of the spin Seebeck effect (SSE) and inverse spin Hall effect is an alternative to conventional semiconductor-based thermocouples as it is large scale, low cost, and environment-friendly. The STE device is thought to be radiation hard, making it attractive for space and nuclear technology applications. By using magnetometry, transmission electron microscopy, and the hard X-ray photoemission spectroscopy (HAXPES) measurements, we show that an STE device made of single-crystalline Y 3 Fe 5 O 12 (YIG)/Pt heterostructures has tolerance to irradiation of high-energy heavy ion beams. We used 200 MeV gold ion beams modeling cumulative damages due to fission products emitted from the surface of spent nuclear fuels. By varying the dose level, we confirmed that the thermoelectric and magnetic properties of the single-crystalline YIG/Pt STE device are finite at the ion-irradiation dose up to 10 12 ions/cm 2 fluence. In addition, the HAXPES measurements were performed to understand the effects at the interface of YIG/Pt. The HAXPES data suggest that the chemical reaction regarding Fe and O that diminishes the SSE signals is promoted with the increase of the irradiation dose. The understandings of the damage analysis in YIG/Pt are beneficial for developing better STE devices applicable to harsh environmental usages. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2022.3145888 |