Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures

In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6- 10~\mu \text{m} in diameter) suspended in silicone oil, was encapsulated in a the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2022-08, Vol.58 (8), p.1-5
Hauptverfasser: Park, Jungjin, Choi, Young T., Flatau, Alison B., Wereley, Norman M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 8
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 58
creator Park, Jungjin
Choi, Young T.
Flatau, Alison B.
Wereley, Norman M.
description In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6- 10~\mu \text{m} in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.
doi_str_mv 10.1109/TMAG.2021.3137838
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2021_3137838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9661396</ieee_id><sourcerecordid>2695153616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmdrbp5lhqW4UWBSveDGk226akm5pkD769WyuehoHv_4f5CLkFNgBg4mG1HM8HOcthgICjEssz0gNRQMYYF-ekxxiUmSh4cUmuYtx1azEE1iOf00arQ2ydStY3kfqaLtWmMcmHrfHOb6xWjs5ca6tIP2za2oZi9khfg22SqejUqZj83gSr6cQ41xUF-pZCq1MbTLwmF7Vy0dz8zT55n01Xk6ds8TJ_nowXmcYCUqZGdYXrHDHHEqFEZEqwSmss63xdYs3LqhiBgDVnHVSpSqHhmvNh98Uv0Sf3p95D8F-tiUnufBua7qTMuRjCEDnwjoITpYOPMZhaHoLdq_AtgcmjRnnUKI8a5Z_GLnN3ylhjzD8vOAcUHH8ABDluQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153616</pqid></control><display><type>article</type><title>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Jungjin ; Choi, Young T. ; Flatau, Alison B. ; Wereley, Norman M.</creator><creatorcontrib>Park, Jungjin ; Choi, Young T. ; Flatau, Alison B. ; Wereley, Norman M.</creatorcontrib><description>In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;10~\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3137838</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive manufacturing (AM) ; Carbonyls ; Cellular structure ; Circular cylinders ; Damping ; Diameters ; elastomeric composite ; Encapsulation ; Excitation ; Magnetic field measurement ; Magnetic fields ; Magnetic hysteresis ; Magnetic liquids ; Magnetic properties ; Magnetism ; magnetorheological fluid (MRF) ; Magnetorheological fluids ; Mechanical properties ; Mechanical tests ; Performance indices ; Polyurethane resins ; Shape ; Stiffness ; thermoplastic polyurethane (TPU) ; Three dimensional composites ; Three dimensional printing ; Three-dimensional displays ; Urethane thermoplastic elastomers</subject><ispartof>IEEE transactions on magnetics, 2022-08, Vol.58 (8), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</citedby><cites>FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</cites><orcidid>0000-0002-6816-2693 ; 0000-0002-9752-7719 ; 0000-0002-6518-5515 ; 0000-0002-9932-6988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9661396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9661396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Jungjin</creatorcontrib><creatorcontrib>Choi, Young T.</creatorcontrib><creatorcontrib>Flatau, Alison B.</creatorcontrib><creatorcontrib>Wereley, Norman M.</creatorcontrib><title>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;10~\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.</description><subject>Additive manufacturing (AM)</subject><subject>Carbonyls</subject><subject>Cellular structure</subject><subject>Circular cylinders</subject><subject>Damping</subject><subject>Diameters</subject><subject>elastomeric composite</subject><subject>Encapsulation</subject><subject>Excitation</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic hysteresis</subject><subject>Magnetic liquids</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>magnetorheological fluid (MRF)</subject><subject>Magnetorheological fluids</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Performance indices</subject><subject>Polyurethane resins</subject><subject>Shape</subject><subject>Stiffness</subject><subject>thermoplastic polyurethane (TPU)</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Three-dimensional displays</subject><subject>Urethane thermoplastic elastomers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmdrbp5lhqW4UWBSveDGk226akm5pkD769WyuehoHv_4f5CLkFNgBg4mG1HM8HOcthgICjEssz0gNRQMYYF-ekxxiUmSh4cUmuYtx1azEE1iOf00arQ2ydStY3kfqaLtWmMcmHrfHOb6xWjs5ca6tIP2za2oZi9khfg22SqejUqZj83gSr6cQ41xUF-pZCq1MbTLwmF7Vy0dz8zT55n01Xk6ds8TJ_nowXmcYCUqZGdYXrHDHHEqFEZEqwSmss63xdYs3LqhiBgDVnHVSpSqHhmvNh98Uv0Sf3p95D8F-tiUnufBua7qTMuRjCEDnwjoITpYOPMZhaHoLdq_AtgcmjRnnUKI8a5Z_GLnN3ylhjzD8vOAcUHH8ABDluQg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Park, Jungjin</creator><creator>Choi, Young T.</creator><creator>Flatau, Alison B.</creator><creator>Wereley, Norman M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6816-2693</orcidid><orcidid>https://orcid.org/0000-0002-9752-7719</orcidid><orcidid>https://orcid.org/0000-0002-6518-5515</orcidid><orcidid>https://orcid.org/0000-0002-9932-6988</orcidid></search><sort><creationdate>20220801</creationdate><title>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</title><author>Park, Jungjin ; Choi, Young T. ; Flatau, Alison B. ; Wereley, Norman M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing (AM)</topic><topic>Carbonyls</topic><topic>Cellular structure</topic><topic>Circular cylinders</topic><topic>Damping</topic><topic>Diameters</topic><topic>elastomeric composite</topic><topic>Encapsulation</topic><topic>Excitation</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic hysteresis</topic><topic>Magnetic liquids</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>magnetorheological fluid (MRF)</topic><topic>Magnetorheological fluids</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Performance indices</topic><topic>Polyurethane resins</topic><topic>Shape</topic><topic>Stiffness</topic><topic>thermoplastic polyurethane (TPU)</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Three-dimensional displays</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Jungjin</creatorcontrib><creatorcontrib>Choi, Young T.</creatorcontrib><creatorcontrib>Flatau, Alison B.</creatorcontrib><creatorcontrib>Wereley, Norman M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Jungjin</au><au>Choi, Young T.</au><au>Flatau, Alison B.</au><au>Wereley, Norman M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>58</volume><issue>8</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;10~\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2021.3137838</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6816-2693</orcidid><orcidid>https://orcid.org/0000-0002-9752-7719</orcidid><orcidid>https://orcid.org/0000-0002-6518-5515</orcidid><orcidid>https://orcid.org/0000-0002-9932-6988</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2022-08, Vol.58 (8), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2021_3137838
source IEEE Electronic Library (IEL)
subjects Additive manufacturing (AM)
Carbonyls
Cellular structure
Circular cylinders
Damping
Diameters
elastomeric composite
Encapsulation
Excitation
Magnetic field measurement
Magnetic fields
Magnetic hysteresis
Magnetic liquids
Magnetic properties
Magnetism
magnetorheological fluid (MRF)
Magnetorheological fluids
Mechanical properties
Mechanical tests
Performance indices
Polyurethane resins
Shape
Stiffness
thermoplastic polyurethane (TPU)
Three dimensional composites
Three dimensional printing
Three-dimensional displays
Urethane thermoplastic elastomers
title Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encapsulations%20of%20Magnetorheological%20Fluids%20Within%203-D%20Printed%20Elastomeric%20Cellular%20Structures&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Park,%20Jungjin&rft.date=2022-08-01&rft.volume=58&rft.issue=8&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3137838&rft_dat=%3Cproquest_RIE%3E2695153616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153616&rft_id=info:pmid/&rft_ieee_id=9661396&rfr_iscdi=true