Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures
In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6- 10~\mu \text{m} in diameter) suspended in silicone oil, was encapsulated in a the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2022-08, Vol.58 (8), p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 58 |
creator | Park, Jungjin Choi, Young T. Flatau, Alison B. Wereley, Norman M. |
description | In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6- 10~\mu \text{m} in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index. |
doi_str_mv | 10.1109/TMAG.2021.3137838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2021_3137838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9661396</ieee_id><sourcerecordid>2695153616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmdrbp5lhqW4UWBSveDGk226akm5pkD769WyuehoHv_4f5CLkFNgBg4mG1HM8HOcthgICjEssz0gNRQMYYF-ekxxiUmSh4cUmuYtx1azEE1iOf00arQ2ydStY3kfqaLtWmMcmHrfHOb6xWjs5ca6tIP2za2oZi9khfg22SqejUqZj83gSr6cQ41xUF-pZCq1MbTLwmF7Vy0dz8zT55n01Xk6ds8TJ_nowXmcYCUqZGdYXrHDHHEqFEZEqwSmss63xdYs3LqhiBgDVnHVSpSqHhmvNh98Uv0Sf3p95D8F-tiUnufBua7qTMuRjCEDnwjoITpYOPMZhaHoLdq_AtgcmjRnnUKI8a5Z_GLnN3ylhjzD8vOAcUHH8ABDluQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695153616</pqid></control><display><type>article</type><title>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Jungjin ; Choi, Young T. ; Flatau, Alison B. ; Wereley, Norman M.</creator><creatorcontrib>Park, Jungjin ; Choi, Young T. ; Flatau, Alison B. ; Wereley, Norman M.</creatorcontrib><description>In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6-<inline-formula> <tex-math notation="LaTeX">10~\mu \text{m} </tex-math></inline-formula> in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3137838</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive manufacturing (AM) ; Carbonyls ; Cellular structure ; Circular cylinders ; Damping ; Diameters ; elastomeric composite ; Encapsulation ; Excitation ; Magnetic field measurement ; Magnetic fields ; Magnetic hysteresis ; Magnetic liquids ; Magnetic properties ; Magnetism ; magnetorheological fluid (MRF) ; Magnetorheological fluids ; Mechanical properties ; Mechanical tests ; Performance indices ; Polyurethane resins ; Shape ; Stiffness ; thermoplastic polyurethane (TPU) ; Three dimensional composites ; Three dimensional printing ; Three-dimensional displays ; Urethane thermoplastic elastomers</subject><ispartof>IEEE transactions on magnetics, 2022-08, Vol.58 (8), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</citedby><cites>FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</cites><orcidid>0000-0002-6816-2693 ; 0000-0002-9752-7719 ; 0000-0002-6518-5515 ; 0000-0002-9932-6988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9661396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9661396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Jungjin</creatorcontrib><creatorcontrib>Choi, Young T.</creatorcontrib><creatorcontrib>Flatau, Alison B.</creatorcontrib><creatorcontrib>Wereley, Norman M.</creatorcontrib><title>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6-<inline-formula> <tex-math notation="LaTeX">10~\mu \text{m} </tex-math></inline-formula> in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.</description><subject>Additive manufacturing (AM)</subject><subject>Carbonyls</subject><subject>Cellular structure</subject><subject>Circular cylinders</subject><subject>Damping</subject><subject>Diameters</subject><subject>elastomeric composite</subject><subject>Encapsulation</subject><subject>Excitation</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic hysteresis</subject><subject>Magnetic liquids</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>magnetorheological fluid (MRF)</subject><subject>Magnetorheological fluids</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Performance indices</subject><subject>Polyurethane resins</subject><subject>Shape</subject><subject>Stiffness</subject><subject>thermoplastic polyurethane (TPU)</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Three-dimensional displays</subject><subject>Urethane thermoplastic elastomers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4Cnrdmdrbp5lhqW4UWBSveDGk226akm5pkD769WyuehoHv_4f5CLkFNgBg4mG1HM8HOcthgICjEssz0gNRQMYYF-ekxxiUmSh4cUmuYtx1azEE1iOf00arQ2ydStY3kfqaLtWmMcmHrfHOb6xWjs5ca6tIP2za2oZi9khfg22SqejUqZj83gSr6cQ41xUF-pZCq1MbTLwmF7Vy0dz8zT55n01Xk6ds8TJ_nowXmcYCUqZGdYXrHDHHEqFEZEqwSmss63xdYs3LqhiBgDVnHVSpSqHhmvNh98Uv0Sf3p95D8F-tiUnufBua7qTMuRjCEDnwjoITpYOPMZhaHoLdq_AtgcmjRnnUKI8a5Z_GLnN3ylhjzD8vOAcUHH8ABDluQg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Park, Jungjin</creator><creator>Choi, Young T.</creator><creator>Flatau, Alison B.</creator><creator>Wereley, Norman M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6816-2693</orcidid><orcidid>https://orcid.org/0000-0002-9752-7719</orcidid><orcidid>https://orcid.org/0000-0002-6518-5515</orcidid><orcidid>https://orcid.org/0000-0002-9932-6988</orcidid></search><sort><creationdate>20220801</creationdate><title>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</title><author>Park, Jungjin ; Choi, Young T. ; Flatau, Alison B. ; Wereley, Norman M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a7fd3b233238318330a90dcc38f2b83f68d47191b60233dada3e6c665145f2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing (AM)</topic><topic>Carbonyls</topic><topic>Cellular structure</topic><topic>Circular cylinders</topic><topic>Damping</topic><topic>Diameters</topic><topic>elastomeric composite</topic><topic>Encapsulation</topic><topic>Excitation</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic hysteresis</topic><topic>Magnetic liquids</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>magnetorheological fluid (MRF)</topic><topic>Magnetorheological fluids</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Performance indices</topic><topic>Polyurethane resins</topic><topic>Shape</topic><topic>Stiffness</topic><topic>thermoplastic polyurethane (TPU)</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Three-dimensional displays</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Jungjin</creatorcontrib><creatorcontrib>Choi, Young T.</creatorcontrib><creatorcontrib>Flatau, Alison B.</creatorcontrib><creatorcontrib>Wereley, Norman M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Jungjin</au><au>Choi, Young T.</au><au>Flatau, Alison B.</au><au>Wereley, Norman M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>58</volume><issue>8</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this study, magnetorheological fluid (MRF) was successfully encapsulated in a 3-D printed elastomeric cellular structure. To this end, an MRF, which was composed of (40% volume fraction) carbonyl iron particles (6-<inline-formula> <tex-math notation="LaTeX">10~\mu \text{m} </tex-math></inline-formula> in diameter) suspended in silicone oil, was encapsulated in a thermoplastic polyurethane (TPU) elastomeric cellular structure. A 3-D printer was used to print a TPU elastomer with a rectangular cellular structure in the shape of a circular cylinder. The MRF was injected into the rectangular voids within the TPU cellular structure (hereinafter MRF-TPU elastomeric composite), and then sealed into the composite by 3-D printing a capping or sealing layer on top. The mechanical stiffness and damping properties of the MRF-TPU elastomeric composite with respect to external magnetic fields (0, 2, and 7 kG) and excitation frequencies (1, 5, and 10 Hz) were measured via uniaxial dynamic mechanical testing. Also, the effects of excitation and prestrain amplitude on the mechanical properties of the MRF-TPU elastomeric composite were investigated in these experiments. The complex stiffness and dissipated energy measured via dynamic mechanical testing were used as the performance index.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2021.3137838</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6816-2693</orcidid><orcidid>https://orcid.org/0000-0002-9752-7719</orcidid><orcidid>https://orcid.org/0000-0002-6518-5515</orcidid><orcidid>https://orcid.org/0000-0002-9932-6988</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2022-08, Vol.58 (8), p.1-5 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2021_3137838 |
source | IEEE Electronic Library (IEL) |
subjects | Additive manufacturing (AM) Carbonyls Cellular structure Circular cylinders Damping Diameters elastomeric composite Encapsulation Excitation Magnetic field measurement Magnetic fields Magnetic hysteresis Magnetic liquids Magnetic properties Magnetism magnetorheological fluid (MRF) Magnetorheological fluids Mechanical properties Mechanical tests Performance indices Polyurethane resins Shape Stiffness thermoplastic polyurethane (TPU) Three dimensional composites Three dimensional printing Three-dimensional displays Urethane thermoplastic elastomers |
title | Encapsulations of Magnetorheological Fluids Within 3-D Printed Elastomeric Cellular Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encapsulations%20of%20Magnetorheological%20Fluids%20Within%203-D%20Printed%20Elastomeric%20Cellular%20Structures&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Park,%20Jungjin&rft.date=2022-08-01&rft.volume=58&rft.issue=8&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3137838&rft_dat=%3Cproquest_RIE%3E2695153616%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695153616&rft_id=info:pmid/&rft_ieee_id=9661396&rfr_iscdi=true |