Combined Micromagnetic Simulation and Machine Learning Approach to Analysis of Polycrystalline Bilayer With Exchange Bias

Exchange bias (EB) is a complex interface phenomenon often used in multiple applications ranging from magnetic field sensors to spintronics and neuromorphic computing for inducing a unidirectional anisotropy in a ferromagnetic layer exchange coupled to an antiferromagnetic layer. Despite the signifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2022-02, Vol.58 (2), p.1-5
Hauptverfasser: Kulesh, N., Permyakov, N., Zverev, V., Koshelev, A., Bolyachkin, A., Vas'kovskiy, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 2
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 58
creator Kulesh, N.
Permyakov, N.
Zverev, V.
Koshelev, A.
Bolyachkin, A.
Vas'kovskiy, V.
description Exchange bias (EB) is a complex interface phenomenon often used in multiple applications ranging from magnetic field sensors to spintronics and neuromorphic computing for inducing a unidirectional anisotropy in a ferromagnetic layer exchange coupled to an antiferromagnetic layer. Despite the significant progress in understanding mechanisms behind the EB, predicting and optimizing hysteresis properties of the pinned layer in real-life systems with complex crystalline and magnetic structure is still a challenge. In this work we use a combined machine learning (ML) and micromagnetic simulation approach for building a unified predictive model giving macroscopic hysteresis properties of the pinned layer for a given set of magnetic and structural parameters. The approximator can be considered as an unknown function, which can be used for finding local or global extrema for coercivity or EB field. We believe that a similar approach can be applied to other computer models or high-quality experimental data for advanced analysis of functional dependencies of hysteresis properties as well as evaluation of computer model used for simulation. A ML model of a bilayer with EB could be helpful for decreasing the computation time, optimizing layers materials and parameters, and minimizing the number of test samples.
doi_str_mv 10.1109/TMAG.2021.3077288
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2021_3077288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422748</ieee_id><sourcerecordid>2621797656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-379bc600afac6152805f423f0ccdecf647821831430bc7fc99c4e51fca145ce13</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKs_QLwEPG9Nstlkc1xLrUKLghWPS5ombcpuUpMtuP_eLC2ehpl5b3jzAXCP0QRjJJ5Wy2o-IYjgSY44J2V5AUZYUJwhxMQlGCGEy0xQRq_BTYz71NICoxHop75dW6c3cGlV8K3cOt1ZBT9te2xkZ72D0qWlVLukggstg7NuC6vDIfg0hJ2HlZNNH22E3sAP3_Qq9LGTTTMYnm0jex3gt-12cPardtJth6mMt-DKyCbqu3Mdg6-X2Wr6mi3e52_TapEpIvIuy7lYK4aQNFIxXJASFYaS3CClNloZRnlJcJljmqO14kYJoagusFEyfag0zsfg8XQ3Bf456tjVe38MKXKsCSOYC84KllT4pEoQYgza1IdgWxn6GqN6IFwPhOuBcH0mnDwPJ4_VWv_rBSWE0zL_A2-YeLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621797656</pqid></control><display><type>article</type><title>Combined Micromagnetic Simulation and Machine Learning Approach to Analysis of Polycrystalline Bilayer With Exchange Bias</title><source>IEEE Electronic Library (IEL)</source><creator>Kulesh, N. ; Permyakov, N. ; Zverev, V. ; Koshelev, A. ; Bolyachkin, A. ; Vas'kovskiy, V.</creator><creatorcontrib>Kulesh, N. ; Permyakov, N. ; Zverev, V. ; Koshelev, A. ; Bolyachkin, A. ; Vas'kovskiy, V.</creatorcontrib><description>Exchange bias (EB) is a complex interface phenomenon often used in multiple applications ranging from magnetic field sensors to spintronics and neuromorphic computing for inducing a unidirectional anisotropy in a ferromagnetic layer exchange coupled to an antiferromagnetic layer. Despite the significant progress in understanding mechanisms behind the EB, predicting and optimizing hysteresis properties of the pinned layer in real-life systems with complex crystalline and magnetic structure is still a challenge. In this work we use a combined machine learning (ML) and micromagnetic simulation approach for building a unified predictive model giving macroscopic hysteresis properties of the pinned layer for a given set of magnetic and structural parameters. The approximator can be considered as an unknown function, which can be used for finding local or global extrema for coercivity or EB field. We believe that a similar approach can be applied to other computer models or high-quality experimental data for advanced analysis of functional dependencies of hysteresis properties as well as evaluation of computer model used for simulation. A ML model of a bilayer with EB could be helpful for decreasing the computation time, optimizing layers materials and parameters, and minimizing the number of test samples.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2021.3077288</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Anisotropic magnetoresistance ; Anisotropy ; Antiferromagnetism ; Bias ; Coercive force ; Coercivity ; Computational modeling ; Exchange bias (EB) ; Exchanging ; Ferromagnetism ; gradient boosting ; Hysteresis ; Machine learning ; machine learning (ML) ; Magnetic hysteresis ; Magnetic properties ; Magnetic structure ; Magnetism ; Mathematical models ; micromagnetic simulation ; Micromagnetics ; Parameters ; Perpendicular magnetic anisotropy ; Prediction models ; Simulation ; Spintronics</subject><ispartof>IEEE transactions on magnetics, 2022-02, Vol.58 (2), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-379bc600afac6152805f423f0ccdecf647821831430bc7fc99c4e51fca145ce13</citedby><cites>FETCH-LOGICAL-c293t-379bc600afac6152805f423f0ccdecf647821831430bc7fc99c4e51fca145ce13</cites><orcidid>0000-0001-7046-2671 ; 0000-0002-0585-1969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9422748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulesh, N.</creatorcontrib><creatorcontrib>Permyakov, N.</creatorcontrib><creatorcontrib>Zverev, V.</creatorcontrib><creatorcontrib>Koshelev, A.</creatorcontrib><creatorcontrib>Bolyachkin, A.</creatorcontrib><creatorcontrib>Vas'kovskiy, V.</creatorcontrib><title>Combined Micromagnetic Simulation and Machine Learning Approach to Analysis of Polycrystalline Bilayer With Exchange Bias</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Exchange bias (EB) is a complex interface phenomenon often used in multiple applications ranging from magnetic field sensors to spintronics and neuromorphic computing for inducing a unidirectional anisotropy in a ferromagnetic layer exchange coupled to an antiferromagnetic layer. Despite the significant progress in understanding mechanisms behind the EB, predicting and optimizing hysteresis properties of the pinned layer in real-life systems with complex crystalline and magnetic structure is still a challenge. In this work we use a combined machine learning (ML) and micromagnetic simulation approach for building a unified predictive model giving macroscopic hysteresis properties of the pinned layer for a given set of magnetic and structural parameters. The approximator can be considered as an unknown function, which can be used for finding local or global extrema for coercivity or EB field. We believe that a similar approach can be applied to other computer models or high-quality experimental data for advanced analysis of functional dependencies of hysteresis properties as well as evaluation of computer model used for simulation. A ML model of a bilayer with EB could be helpful for decreasing the computation time, optimizing layers materials and parameters, and minimizing the number of test samples.</description><subject>Analytical models</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Bias</subject><subject>Coercive force</subject><subject>Coercivity</subject><subject>Computational modeling</subject><subject>Exchange bias (EB)</subject><subject>Exchanging</subject><subject>Ferromagnetism</subject><subject>gradient boosting</subject><subject>Hysteresis</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Magnetic hysteresis</subject><subject>Magnetic properties</subject><subject>Magnetic structure</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>micromagnetic simulation</subject><subject>Micromagnetics</subject><subject>Parameters</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Prediction models</subject><subject>Simulation</subject><subject>Spintronics</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKs_QLwEPG9Nstlkc1xLrUKLghWPS5ombcpuUpMtuP_eLC2ehpl5b3jzAXCP0QRjJJ5Wy2o-IYjgSY44J2V5AUZYUJwhxMQlGCGEy0xQRq_BTYz71NICoxHop75dW6c3cGlV8K3cOt1ZBT9te2xkZ72D0qWlVLukggstg7NuC6vDIfg0hJ2HlZNNH22E3sAP3_Qq9LGTTTMYnm0jex3gt-12cPardtJth6mMt-DKyCbqu3Mdg6-X2Wr6mi3e52_TapEpIvIuy7lYK4aQNFIxXJASFYaS3CClNloZRnlJcJljmqO14kYJoagusFEyfag0zsfg8XQ3Bf456tjVe38MKXKsCSOYC84KllT4pEoQYgza1IdgWxn6GqN6IFwPhOuBcH0mnDwPJ4_VWv_rBSWE0zL_A2-YeLA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kulesh, N.</creator><creator>Permyakov, N.</creator><creator>Zverev, V.</creator><creator>Koshelev, A.</creator><creator>Bolyachkin, A.</creator><creator>Vas'kovskiy, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7046-2671</orcidid><orcidid>https://orcid.org/0000-0002-0585-1969</orcidid></search><sort><creationdate>20220201</creationdate><title>Combined Micromagnetic Simulation and Machine Learning Approach to Analysis of Polycrystalline Bilayer With Exchange Bias</title><author>Kulesh, N. ; Permyakov, N. ; Zverev, V. ; Koshelev, A. ; Bolyachkin, A. ; Vas'kovskiy, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-379bc600afac6152805f423f0ccdecf647821831430bc7fc99c4e51fca145ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Bias</topic><topic>Coercive force</topic><topic>Coercivity</topic><topic>Computational modeling</topic><topic>Exchange bias (EB)</topic><topic>Exchanging</topic><topic>Ferromagnetism</topic><topic>gradient boosting</topic><topic>Hysteresis</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Magnetic hysteresis</topic><topic>Magnetic properties</topic><topic>Magnetic structure</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>micromagnetic simulation</topic><topic>Micromagnetics</topic><topic>Parameters</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Prediction models</topic><topic>Simulation</topic><topic>Spintronics</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulesh, N.</creatorcontrib><creatorcontrib>Permyakov, N.</creatorcontrib><creatorcontrib>Zverev, V.</creatorcontrib><creatorcontrib>Koshelev, A.</creatorcontrib><creatorcontrib>Bolyachkin, A.</creatorcontrib><creatorcontrib>Vas'kovskiy, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulesh, N.</au><au>Permyakov, N.</au><au>Zverev, V.</au><au>Koshelev, A.</au><au>Bolyachkin, A.</au><au>Vas'kovskiy, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Micromagnetic Simulation and Machine Learning Approach to Analysis of Polycrystalline Bilayer With Exchange Bias</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>58</volume><issue>2</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Exchange bias (EB) is a complex interface phenomenon often used in multiple applications ranging from magnetic field sensors to spintronics and neuromorphic computing for inducing a unidirectional anisotropy in a ferromagnetic layer exchange coupled to an antiferromagnetic layer. Despite the significant progress in understanding mechanisms behind the EB, predicting and optimizing hysteresis properties of the pinned layer in real-life systems with complex crystalline and magnetic structure is still a challenge. In this work we use a combined machine learning (ML) and micromagnetic simulation approach for building a unified predictive model giving macroscopic hysteresis properties of the pinned layer for a given set of magnetic and structural parameters. The approximator can be considered as an unknown function, which can be used for finding local or global extrema for coercivity or EB field. We believe that a similar approach can be applied to other computer models or high-quality experimental data for advanced analysis of functional dependencies of hysteresis properties as well as evaluation of computer model used for simulation. A ML model of a bilayer with EB could be helpful for decreasing the computation time, optimizing layers materials and parameters, and minimizing the number of test samples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2021.3077288</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7046-2671</orcidid><orcidid>https://orcid.org/0000-0002-0585-1969</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2022-02, Vol.58 (2), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2021_3077288
source IEEE Electronic Library (IEL)
subjects Analytical models
Anisotropic magnetoresistance
Anisotropy
Antiferromagnetism
Bias
Coercive force
Coercivity
Computational modeling
Exchange bias (EB)
Exchanging
Ferromagnetism
gradient boosting
Hysteresis
Machine learning
machine learning (ML)
Magnetic hysteresis
Magnetic properties
Magnetic structure
Magnetism
Mathematical models
micromagnetic simulation
Micromagnetics
Parameters
Perpendicular magnetic anisotropy
Prediction models
Simulation
Spintronics
title Combined Micromagnetic Simulation and Machine Learning Approach to Analysis of Polycrystalline Bilayer With Exchange Bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Micromagnetic%20Simulation%20and%20Machine%20Learning%20Approach%20to%20Analysis%20of%20Polycrystalline%20Bilayer%20With%20Exchange%20Bias&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kulesh,%20N.&rft.date=2022-02-01&rft.volume=58&rft.issue=2&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2021.3077288&rft_dat=%3Cproquest_RIE%3E2621797656%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621797656&rft_id=info:pmid/&rft_ieee_id=9422748&rfr_iscdi=true