Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model

Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2021-02, Vol.57 (2), p.1-5
Hauptverfasser: Kiarie, Winnie M., Barron, Edward J., Baghel, A. P. S., Nlebedim, I. C., Bartlett, Michael D., Jiles, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 2
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 57
creator Kiarie, Winnie M.
Barron, Edward J.
Baghel, A. P. S.
Nlebedim, I. C.
Bartlett, Michael D.
Jiles, David C.
description Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization ( {M} _{\mathbf {s}} ), domain density ( {a} ), domain coupling ( \alpha ), loss coefficient ( {k} ), and reversibility ( {c} ). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated {M} _{\mathbf {s}} for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated {k} , {a} , and \alpha provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.
doi_str_mv 10.1109/TMAG.2020.3024878
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2020_3024878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9201013</ieee_id><sourcerecordid>2479887594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</originalsourceid><addsrcrecordid>eNpFkE1PAjEQhhujifjxA4yXTTwvTjvd7vZICIIGoge4eGlKmcUlC8V2OfDv3RWip8lMnved5GHsgUOfc9DP89lg3BcgoI8gZJEXF6zHteQpgNKXrAfAi1RLJa_ZTYybdpUZhx77nPkV1dVunfgymdn1jprKJR_B7yk0FcX_sw9f5Gu_rpytk1FtY-O3FGKyiF36bZBMjrGhQLGKyW_pHbsqbR3p_jxv2eJlNB9O0un7-HU4mKYOUTWpQCy54IAKnF0JcG4psUCusiVirjOtQZMi7VZK564EURbcIhSoIedoFd6yp1PvPvjvA8XGbPwh7NqXRshcF0WeadlS_ES54GMMVJp9qLY2HA0H0yk0nULTKTRnhW3m8ZSpiOiP1wI4cMQfR4trvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887594</pqid></control><display><type>article</type><title>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</title><source>IEEE Electronic Library (IEL)</source><creator>Kiarie, Winnie M. ; Barron, Edward J. ; Baghel, A. P. S. ; Nlebedim, I. C. ; Bartlett, Michael D. ; Jiles, David C.</creator><creatorcontrib>Kiarie, Winnie M. ; Barron, Edward J. ; Baghel, A. P. S. ; Nlebedim, I. C. ; Bartlett, Michael D. ; Jiles, David C.</creatorcontrib><description><![CDATA[Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization (<inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula>), domain density (<inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>), domain coupling (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>), loss coefficient (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>), and reversibility (<inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated <inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula> for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2020.3024878</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Coercivity ; Composite materials ; Coupling ; Density ; Domains ; Elastomers ; Energy conversion ; Finite element method ; Finite-element model (FEM) ; Hysteresis loops ; Hysteresis models ; Jiles–Atherton (JA) model ; Magnetic domains ; Magnetic hysteresis ; Magnetic materials ; Magnetic permeability ; Magnetic properties ; Magnetic saturation ; Magnetism ; Magnetization ; Magnetomechanical effects ; magnetorheological elastomers (MREs) ; Mathematical models ; Mechanical properties ; Modelling ; Parameters ; Polymer matrix composites ; Powders ; Remanence ; Saturation magnetization</subject><ispartof>IEEE transactions on magnetics, 2021-02, Vol.57 (2), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</citedby><cites>FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</cites><orcidid>0000-0002-4574-2353 ; 0000-0002-7391-5135 ; 0000-0002-1329-5894 ; 0000-0002-0831-6697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9201013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9201013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiarie, Winnie M.</creatorcontrib><creatorcontrib>Barron, Edward J.</creatorcontrib><creatorcontrib>Baghel, A. P. S.</creatorcontrib><creatorcontrib>Nlebedim, I. C.</creatorcontrib><creatorcontrib>Bartlett, Michael D.</creatorcontrib><creatorcontrib>Jiles, David C.</creatorcontrib><title>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization (<inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula>), domain density (<inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>), domain coupling (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>), loss coefficient (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>), and reversibility (<inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated <inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula> for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.]]></description><subject>Actuators</subject><subject>Algorithms</subject><subject>Coercivity</subject><subject>Composite materials</subject><subject>Coupling</subject><subject>Density</subject><subject>Domains</subject><subject>Elastomers</subject><subject>Energy conversion</subject><subject>Finite element method</subject><subject>Finite-element model (FEM)</subject><subject>Hysteresis loops</subject><subject>Hysteresis models</subject><subject>Jiles–Atherton (JA) model</subject><subject>Magnetic domains</subject><subject>Magnetic hysteresis</subject><subject>Magnetic materials</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetomechanical effects</subject><subject>magnetorheological elastomers (MREs)</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Polymer matrix composites</subject><subject>Powders</subject><subject>Remanence</subject><subject>Saturation magnetization</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1PAjEQhhujifjxA4yXTTwvTjvd7vZICIIGoge4eGlKmcUlC8V2OfDv3RWip8lMnved5GHsgUOfc9DP89lg3BcgoI8gZJEXF6zHteQpgNKXrAfAi1RLJa_ZTYybdpUZhx77nPkV1dVunfgymdn1jprKJR_B7yk0FcX_sw9f5Gu_rpytk1FtY-O3FGKyiF36bZBMjrGhQLGKyW_pHbsqbR3p_jxv2eJlNB9O0un7-HU4mKYOUTWpQCy54IAKnF0JcG4psUCusiVirjOtQZMi7VZK564EURbcIhSoIedoFd6yp1PvPvjvA8XGbPwh7NqXRshcF0WeadlS_ES54GMMVJp9qLY2HA0H0yk0nULTKTRnhW3m8ZSpiOiP1wI4cMQfR4trvg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kiarie, Winnie M.</creator><creator>Barron, Edward J.</creator><creator>Baghel, A. P. S.</creator><creator>Nlebedim, I. C.</creator><creator>Bartlett, Michael D.</creator><creator>Jiles, David C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4574-2353</orcidid><orcidid>https://orcid.org/0000-0002-7391-5135</orcidid><orcidid>https://orcid.org/0000-0002-1329-5894</orcidid><orcidid>https://orcid.org/0000-0002-0831-6697</orcidid></search><sort><creationdate>20210201</creationdate><title>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</title><author>Kiarie, Winnie M. ; Barron, Edward J. ; Baghel, A. P. S. ; Nlebedim, I. C. ; Bartlett, Michael D. ; Jiles, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Coercivity</topic><topic>Composite materials</topic><topic>Coupling</topic><topic>Density</topic><topic>Domains</topic><topic>Elastomers</topic><topic>Energy conversion</topic><topic>Finite element method</topic><topic>Finite-element model (FEM)</topic><topic>Hysteresis loops</topic><topic>Hysteresis models</topic><topic>Jiles–Atherton (JA) model</topic><topic>Magnetic domains</topic><topic>Magnetic hysteresis</topic><topic>Magnetic materials</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetomechanical effects</topic><topic>magnetorheological elastomers (MREs)</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Polymer matrix composites</topic><topic>Powders</topic><topic>Remanence</topic><topic>Saturation magnetization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kiarie, Winnie M.</creatorcontrib><creatorcontrib>Barron, Edward J.</creatorcontrib><creatorcontrib>Baghel, A. P. S.</creatorcontrib><creatorcontrib>Nlebedim, I. C.</creatorcontrib><creatorcontrib>Bartlett, Michael D.</creatorcontrib><creatorcontrib>Jiles, David C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiarie, Winnie M.</au><au>Barron, Edward J.</au><au>Baghel, A. P. S.</au><au>Nlebedim, I. C.</au><au>Bartlett, Michael D.</au><au>Jiles, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>57</volume><issue>2</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization (<inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula>), domain density (<inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>), domain coupling (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>), loss coefficient (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>), and reversibility (<inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated <inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula> for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2020.3024878</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4574-2353</orcidid><orcidid>https://orcid.org/0000-0002-7391-5135</orcidid><orcidid>https://orcid.org/0000-0002-1329-5894</orcidid><orcidid>https://orcid.org/0000-0002-0831-6697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2021-02, Vol.57 (2), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2020_3024878
source IEEE Electronic Library (IEL)
subjects Actuators
Algorithms
Coercivity
Composite materials
Coupling
Density
Domains
Elastomers
Energy conversion
Finite element method
Finite-element model (FEM)
Hysteresis loops
Hysteresis models
Jiles–Atherton (JA) model
Magnetic domains
Magnetic hysteresis
Magnetic materials
Magnetic permeability
Magnetic properties
Magnetic saturation
Magnetism
Magnetization
Magnetomechanical effects
magnetorheological elastomers (MREs)
Mathematical models
Mechanical properties
Modelling
Parameters
Polymer matrix composites
Powders
Remanence
Saturation magnetization
title Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Magnetic%20Properties%20of%20Magnetorheological%20Elastomers%20Using%20JA%20Hysteresis%20Model&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kiarie,%20Winnie%20M.&rft.date=2021-02-01&rft.volume=57&rft.issue=2&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2020.3024878&rft_dat=%3Cproquest_RIE%3E2479887594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887594&rft_id=info:pmid/&rft_ieee_id=9201013&rfr_iscdi=true