Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model
Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their cou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2021-02, Vol.57 (2), p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 57 |
creator | Kiarie, Winnie M. Barron, Edward J. Baghel, A. P. S. Nlebedim, I. C. Bartlett, Michael D. Jiles, David C. |
description | Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization ( {M} _{\mathbf {s}} ), domain density ( {a} ), domain coupling ( \alpha ), loss coefficient ( {k} ), and reversibility ( {c} ). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated {M} _{\mathbf {s}} for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated {k} , {a} , and \alpha provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position. |
doi_str_mv | 10.1109/TMAG.2020.3024878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2020_3024878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9201013</ieee_id><sourcerecordid>2479887594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</originalsourceid><addsrcrecordid>eNpFkE1PAjEQhhujifjxA4yXTTwvTjvd7vZICIIGoge4eGlKmcUlC8V2OfDv3RWip8lMnved5GHsgUOfc9DP89lg3BcgoI8gZJEXF6zHteQpgNKXrAfAi1RLJa_ZTYybdpUZhx77nPkV1dVunfgymdn1jprKJR_B7yk0FcX_sw9f5Gu_rpytk1FtY-O3FGKyiF36bZBMjrGhQLGKyW_pHbsqbR3p_jxv2eJlNB9O0un7-HU4mKYOUTWpQCy54IAKnF0JcG4psUCusiVirjOtQZMi7VZK564EURbcIhSoIedoFd6yp1PvPvjvA8XGbPwh7NqXRshcF0WeadlS_ES54GMMVJp9qLY2HA0H0yk0nULTKTRnhW3m8ZSpiOiP1wI4cMQfR4trvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887594</pqid></control><display><type>article</type><title>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</title><source>IEEE Electronic Library (IEL)</source><creator>Kiarie, Winnie M. ; Barron, Edward J. ; Baghel, A. P. S. ; Nlebedim, I. C. ; Bartlett, Michael D. ; Jiles, David C.</creator><creatorcontrib>Kiarie, Winnie M. ; Barron, Edward J. ; Baghel, A. P. S. ; Nlebedim, I. C. ; Bartlett, Michael D. ; Jiles, David C.</creatorcontrib><description><![CDATA[Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization (<inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula>), domain density (<inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>), domain coupling (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>), loss coefficient (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>), and reversibility (<inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated <inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula> for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2020.3024878</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Algorithms ; Coercivity ; Composite materials ; Coupling ; Density ; Domains ; Elastomers ; Energy conversion ; Finite element method ; Finite-element model (FEM) ; Hysteresis loops ; Hysteresis models ; Jiles–Atherton (JA) model ; Magnetic domains ; Magnetic hysteresis ; Magnetic materials ; Magnetic permeability ; Magnetic properties ; Magnetic saturation ; Magnetism ; Magnetization ; Magnetomechanical effects ; magnetorheological elastomers (MREs) ; Mathematical models ; Mechanical properties ; Modelling ; Parameters ; Polymer matrix composites ; Powders ; Remanence ; Saturation magnetization</subject><ispartof>IEEE transactions on magnetics, 2021-02, Vol.57 (2), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</citedby><cites>FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</cites><orcidid>0000-0002-4574-2353 ; 0000-0002-7391-5135 ; 0000-0002-1329-5894 ; 0000-0002-0831-6697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9201013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9201013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiarie, Winnie M.</creatorcontrib><creatorcontrib>Barron, Edward J.</creatorcontrib><creatorcontrib>Baghel, A. P. S.</creatorcontrib><creatorcontrib>Nlebedim, I. C.</creatorcontrib><creatorcontrib>Bartlett, Michael D.</creatorcontrib><creatorcontrib>Jiles, David C.</creatorcontrib><title>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization (<inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula>), domain density (<inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>), domain coupling (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>), loss coefficient (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>), and reversibility (<inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated <inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula> for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.]]></description><subject>Actuators</subject><subject>Algorithms</subject><subject>Coercivity</subject><subject>Composite materials</subject><subject>Coupling</subject><subject>Density</subject><subject>Domains</subject><subject>Elastomers</subject><subject>Energy conversion</subject><subject>Finite element method</subject><subject>Finite-element model (FEM)</subject><subject>Hysteresis loops</subject><subject>Hysteresis models</subject><subject>Jiles–Atherton (JA) model</subject><subject>Magnetic domains</subject><subject>Magnetic hysteresis</subject><subject>Magnetic materials</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetomechanical effects</subject><subject>magnetorheological elastomers (MREs)</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Polymer matrix composites</subject><subject>Powders</subject><subject>Remanence</subject><subject>Saturation magnetization</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1PAjEQhhujifjxA4yXTTwvTjvd7vZICIIGoge4eGlKmcUlC8V2OfDv3RWip8lMnved5GHsgUOfc9DP89lg3BcgoI8gZJEXF6zHteQpgNKXrAfAi1RLJa_ZTYybdpUZhx77nPkV1dVunfgymdn1jprKJR_B7yk0FcX_sw9f5Gu_rpytk1FtY-O3FGKyiF36bZBMjrGhQLGKyW_pHbsqbR3p_jxv2eJlNB9O0un7-HU4mKYOUTWpQCy54IAKnF0JcG4psUCusiVirjOtQZMi7VZK564EURbcIhSoIedoFd6yp1PvPvjvA8XGbPwh7NqXRshcF0WeadlS_ES54GMMVJp9qLY2HA0H0yk0nULTKTRnhW3m8ZSpiOiP1wI4cMQfR4trvg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kiarie, Winnie M.</creator><creator>Barron, Edward J.</creator><creator>Baghel, A. P. S.</creator><creator>Nlebedim, I. C.</creator><creator>Bartlett, Michael D.</creator><creator>Jiles, David C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4574-2353</orcidid><orcidid>https://orcid.org/0000-0002-7391-5135</orcidid><orcidid>https://orcid.org/0000-0002-1329-5894</orcidid><orcidid>https://orcid.org/0000-0002-0831-6697</orcidid></search><sort><creationdate>20210201</creationdate><title>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</title><author>Kiarie, Winnie M. ; Barron, Edward J. ; Baghel, A. P. S. ; Nlebedim, I. C. ; Bartlett, Michael D. ; Jiles, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-233f1210360cad20ccb4383165b337959909e6e9cd697cf02f81a308390713a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Coercivity</topic><topic>Composite materials</topic><topic>Coupling</topic><topic>Density</topic><topic>Domains</topic><topic>Elastomers</topic><topic>Energy conversion</topic><topic>Finite element method</topic><topic>Finite-element model (FEM)</topic><topic>Hysteresis loops</topic><topic>Hysteresis models</topic><topic>Jiles–Atherton (JA) model</topic><topic>Magnetic domains</topic><topic>Magnetic hysteresis</topic><topic>Magnetic materials</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetomechanical effects</topic><topic>magnetorheological elastomers (MREs)</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Polymer matrix composites</topic><topic>Powders</topic><topic>Remanence</topic><topic>Saturation magnetization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kiarie, Winnie M.</creatorcontrib><creatorcontrib>Barron, Edward J.</creatorcontrib><creatorcontrib>Baghel, A. P. S.</creatorcontrib><creatorcontrib>Nlebedim, I. C.</creatorcontrib><creatorcontrib>Bartlett, Michael D.</creatorcontrib><creatorcontrib>Jiles, David C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiarie, Winnie M.</au><au>Barron, Edward J.</au><au>Baghel, A. P. S.</au><au>Nlebedim, I. C.</au><au>Bartlett, Michael D.</au><au>Jiles, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>57</volume><issue>2</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles-Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization (<inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula>), domain density (<inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>), domain coupling (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>), loss coefficient (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>), and reversibility (<inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated <inline-formula> <tex-math notation="LaTeX">{M} _{\mathbf {s}} </tex-math></inline-formula> for the MRE is reasonably related to that of the Fe powder by a factor of the particle's volume fraction used in the MRE. The calculated <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">{a} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2020.3024878</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4574-2353</orcidid><orcidid>https://orcid.org/0000-0002-7391-5135</orcidid><orcidid>https://orcid.org/0000-0002-1329-5894</orcidid><orcidid>https://orcid.org/0000-0002-0831-6697</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2021-02, Vol.57 (2), p.1-5 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2020_3024878 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Algorithms Coercivity Composite materials Coupling Density Domains Elastomers Energy conversion Finite element method Finite-element model (FEM) Hysteresis loops Hysteresis models Jiles–Atherton (JA) model Magnetic domains Magnetic hysteresis Magnetic materials Magnetic permeability Magnetic properties Magnetic saturation Magnetism Magnetization Magnetomechanical effects magnetorheological elastomers (MREs) Mathematical models Mechanical properties Modelling Parameters Polymer matrix composites Powders Remanence Saturation magnetization |
title | Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Magnetic%20Properties%20of%20Magnetorheological%20Elastomers%20Using%20JA%20Hysteresis%20Model&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kiarie,%20Winnie%20M.&rft.date=2021-02-01&rft.volume=57&rft.issue=2&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2020.3024878&rft_dat=%3Cproquest_RIE%3E2479887594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887594&rft_id=info:pmid/&rft_ieee_id=9201013&rfr_iscdi=true |