Improved EL Model of Long Stator Linear Synchronous Motor Via Analytical Magnetic Coenergy Reconstruction Method

Electromagnetic-suspension (EMS)-type maglev, based on long stator linear synchronous motor (LSLSM), suffers from the flux linkage and thrust ripple. This is due to the non-sinusoidal airgap magnetic field distribution caused by the slot effect and end effect. In this article, it is intended to addr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2020-08, Vol.56 (8), p.1-13
Hauptverfasser: Kang, Jinsong, Mu, Siyuan, Ni, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 8
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 56
creator Kang, Jinsong
Mu, Siyuan
Ni, Fei
description Electromagnetic-suspension (EMS)-type maglev, based on long stator linear synchronous motor (LSLSM), suffers from the flux linkage and thrust ripple. This is due to the non-sinusoidal airgap magnetic field distribution caused by the slot effect and end effect. In this article, it is intended to address this issue by establishing a nonlinear mathematical model of LSLSM for real-time simulation and controller design, considering the spatial harmonics and core saturation. The Euler-Lagrange (EL) model is improved by means of coenergy and then applied to obtain the general equations of LSLSM. At first, the variation in coenergy in LSLSM regarding the mover position and stator current are analyzed, in the presence of spatial harmonics and core saturation. Afterward, an analytical model of coenergy is constructed by two Fourier basis vectors of mover position and torque angle, and a coefficient matrix polynomial of stator current magnitude. Then, a new model of LSLSM is derived based on the coenergy model and EL method. The parameters of the model can be obtained from the numerical data of coenergy in all operation ranges via finite-element analysis (FEA). Finally, the new model of LSLSM and its propulsion system are integrated in MATLAB/Simulink setup. The simulation results show that the improved EL model can achieve satisfactory accuracy compared with the FEA results well, whereas the computational efficiency is improved largely.
doi_str_mv 10.1109/TMAG.2020.3002964
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2020_3002964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9118973</ieee_id><sourcerecordid>2426670390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fa2cc13149f76c124dcbb3900aef4fe72496a872e477ed4d22e1622a8a900b53</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPgS8LkzSbO0eRxjzkGL4IavJUuvW0eXzCQT-t-bsuHT3XG_7-PuQ-iZkgmlRL5tytlywggjk5QQJgW_QSMqOU0IEfIWjQiheSK54PfowftDHPmUkhE6rY4nZ3-hxosCl7aGDtsGF9bs8DqoYB0uWgPK4XVv9N5ZY88-csPiu1V4ZlTXh1arDpdqZyC2eG7BgNv1-Au0NT64sw6tNbiEsLf1I7prVOfh6VrHaPO-2Mw_kuJzuZrPikQzmYakUUxrmlIum0xoynitt9tUEqKg4Q1kjEuh8owBzzKoec0YUMGYylVkttN0jF4vtvG7nzP4UB3s2cVrfcU4EyIj0SxS9EJpZ7130FQn1x6V6ytKqiHXasi1GnKtrrlGzctF0wLAPy8pzWWWpn933XSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426670390</pqid></control><display><type>article</type><title>Improved EL Model of Long Stator Linear Synchronous Motor Via Analytical Magnetic Coenergy Reconstruction Method</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Jinsong ; Mu, Siyuan ; Ni, Fei</creator><creatorcontrib>Kang, Jinsong ; Mu, Siyuan ; Ni, Fei</creatorcontrib><description>Electromagnetic-suspension (EMS)-type maglev, based on long stator linear synchronous motor (LSLSM), suffers from the flux linkage and thrust ripple. This is due to the non-sinusoidal airgap magnetic field distribution caused by the slot effect and end effect. In this article, it is intended to address this issue by establishing a nonlinear mathematical model of LSLSM for real-time simulation and controller design, considering the spatial harmonics and core saturation. The Euler-Lagrange (EL) model is improved by means of coenergy and then applied to obtain the general equations of LSLSM. At first, the variation in coenergy in LSLSM regarding the mover position and stator current are analyzed, in the presence of spatial harmonics and core saturation. Afterward, an analytical model of coenergy is constructed by two Fourier basis vectors of mover position and torque angle, and a coefficient matrix polynomial of stator current magnitude. Then, a new model of LSLSM is derived based on the coenergy model and EL method. The parameters of the model can be obtained from the numerical data of coenergy in all operation ranges via finite-element analysis (FEA). Finally, the new model of LSLSM and its propulsion system are integrated in MATLAB/Simulink setup. The simulation results show that the improved EL model can achieve satisfactory accuracy compared with the FEA results well, whereas the computational efficiency is improved largely.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2020.3002964</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Coenergy ; Computer simulation ; Control systems design ; Euler–Lagrange (EL) ; Finite element method ; Harmonic analysis ; Harmonics ; long stator linear synchronous motor (LSLSM) ; maglev ; Magnetism ; Mathematical model ; Mathematical models ; Matrix methods ; Model accuracy ; Motor stators ; Numerical models ; Polynomials ; Propulsion systems ; Saturation ; Stator windings ; Stators ; Synchronous motors ; thrust ripple ; Vectors (mathematics) ; virtual work</subject><ispartof>IEEE transactions on magnetics, 2020-08, Vol.56 (8), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fa2cc13149f76c124dcbb3900aef4fe72496a872e477ed4d22e1622a8a900b53</citedby><cites>FETCH-LOGICAL-c293t-fa2cc13149f76c124dcbb3900aef4fe72496a872e477ed4d22e1622a8a900b53</cites><orcidid>0000-0002-3006-1301 ; 0000-0002-8735-7488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9118973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9118973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Jinsong</creatorcontrib><creatorcontrib>Mu, Siyuan</creatorcontrib><creatorcontrib>Ni, Fei</creatorcontrib><title>Improved EL Model of Long Stator Linear Synchronous Motor Via Analytical Magnetic Coenergy Reconstruction Method</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Electromagnetic-suspension (EMS)-type maglev, based on long stator linear synchronous motor (LSLSM), suffers from the flux linkage and thrust ripple. This is due to the non-sinusoidal airgap magnetic field distribution caused by the slot effect and end effect. In this article, it is intended to address this issue by establishing a nonlinear mathematical model of LSLSM for real-time simulation and controller design, considering the spatial harmonics and core saturation. The Euler-Lagrange (EL) model is improved by means of coenergy and then applied to obtain the general equations of LSLSM. At first, the variation in coenergy in LSLSM regarding the mover position and stator current are analyzed, in the presence of spatial harmonics and core saturation. Afterward, an analytical model of coenergy is constructed by two Fourier basis vectors of mover position and torque angle, and a coefficient matrix polynomial of stator current magnitude. Then, a new model of LSLSM is derived based on the coenergy model and EL method. The parameters of the model can be obtained from the numerical data of coenergy in all operation ranges via finite-element analysis (FEA). Finally, the new model of LSLSM and its propulsion system are integrated in MATLAB/Simulink setup. The simulation results show that the improved EL model can achieve satisfactory accuracy compared with the FEA results well, whereas the computational efficiency is improved largely.</description><subject>Analytical models</subject><subject>Coenergy</subject><subject>Computer simulation</subject><subject>Control systems design</subject><subject>Euler–Lagrange (EL)</subject><subject>Finite element method</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>long stator linear synchronous motor (LSLSM)</subject><subject>maglev</subject><subject>Magnetism</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Model accuracy</subject><subject>Motor stators</subject><subject>Numerical models</subject><subject>Polynomials</subject><subject>Propulsion systems</subject><subject>Saturation</subject><subject>Stator windings</subject><subject>Stators</subject><subject>Synchronous motors</subject><subject>thrust ripple</subject><subject>Vectors (mathematics)</subject><subject>virtual work</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPgS8LkzSbO0eRxjzkGL4IavJUuvW0eXzCQT-t-bsuHT3XG_7-PuQ-iZkgmlRL5tytlywggjk5QQJgW_QSMqOU0IEfIWjQiheSK54PfowftDHPmUkhE6rY4nZ3-hxosCl7aGDtsGF9bs8DqoYB0uWgPK4XVv9N5ZY88-csPiu1V4ZlTXh1arDpdqZyC2eG7BgNv1-Au0NT64sw6tNbiEsLf1I7prVOfh6VrHaPO-2Mw_kuJzuZrPikQzmYakUUxrmlIum0xoynitt9tUEqKg4Q1kjEuh8owBzzKoec0YUMGYylVkttN0jF4vtvG7nzP4UB3s2cVrfcU4EyIj0SxS9EJpZ7130FQn1x6V6ytKqiHXasi1GnKtrrlGzctF0wLAPy8pzWWWpn933XSO</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kang, Jinsong</creator><creator>Mu, Siyuan</creator><creator>Ni, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3006-1301</orcidid><orcidid>https://orcid.org/0000-0002-8735-7488</orcidid></search><sort><creationdate>20200801</creationdate><title>Improved EL Model of Long Stator Linear Synchronous Motor Via Analytical Magnetic Coenergy Reconstruction Method</title><author>Kang, Jinsong ; Mu, Siyuan ; Ni, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fa2cc13149f76c124dcbb3900aef4fe72496a872e477ed4d22e1622a8a900b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Coenergy</topic><topic>Computer simulation</topic><topic>Control systems design</topic><topic>Euler–Lagrange (EL)</topic><topic>Finite element method</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>long stator linear synchronous motor (LSLSM)</topic><topic>maglev</topic><topic>Magnetism</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Model accuracy</topic><topic>Motor stators</topic><topic>Numerical models</topic><topic>Polynomials</topic><topic>Propulsion systems</topic><topic>Saturation</topic><topic>Stator windings</topic><topic>Stators</topic><topic>Synchronous motors</topic><topic>thrust ripple</topic><topic>Vectors (mathematics)</topic><topic>virtual work</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jinsong</creatorcontrib><creatorcontrib>Mu, Siyuan</creatorcontrib><creatorcontrib>Ni, Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Jinsong</au><au>Mu, Siyuan</au><au>Ni, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved EL Model of Long Stator Linear Synchronous Motor Via Analytical Magnetic Coenergy Reconstruction Method</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>56</volume><issue>8</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Electromagnetic-suspension (EMS)-type maglev, based on long stator linear synchronous motor (LSLSM), suffers from the flux linkage and thrust ripple. This is due to the non-sinusoidal airgap magnetic field distribution caused by the slot effect and end effect. In this article, it is intended to address this issue by establishing a nonlinear mathematical model of LSLSM for real-time simulation and controller design, considering the spatial harmonics and core saturation. The Euler-Lagrange (EL) model is improved by means of coenergy and then applied to obtain the general equations of LSLSM. At first, the variation in coenergy in LSLSM regarding the mover position and stator current are analyzed, in the presence of spatial harmonics and core saturation. Afterward, an analytical model of coenergy is constructed by two Fourier basis vectors of mover position and torque angle, and a coefficient matrix polynomial of stator current magnitude. Then, a new model of LSLSM is derived based on the coenergy model and EL method. The parameters of the model can be obtained from the numerical data of coenergy in all operation ranges via finite-element analysis (FEA). Finally, the new model of LSLSM and its propulsion system are integrated in MATLAB/Simulink setup. The simulation results show that the improved EL model can achieve satisfactory accuracy compared with the FEA results well, whereas the computational efficiency is improved largely.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2020.3002964</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3006-1301</orcidid><orcidid>https://orcid.org/0000-0002-8735-7488</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2020-08, Vol.56 (8), p.1-13
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2020_3002964
source IEEE Electronic Library (IEL)
subjects Analytical models
Coenergy
Computer simulation
Control systems design
Euler–Lagrange (EL)
Finite element method
Harmonic analysis
Harmonics
long stator linear synchronous motor (LSLSM)
maglev
Magnetism
Mathematical model
Mathematical models
Matrix methods
Model accuracy
Motor stators
Numerical models
Polynomials
Propulsion systems
Saturation
Stator windings
Stators
Synchronous motors
thrust ripple
Vectors (mathematics)
virtual work
title Improved EL Model of Long Stator Linear Synchronous Motor Via Analytical Magnetic Coenergy Reconstruction Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20EL%20Model%20of%20Long%20Stator%20Linear%20Synchronous%20Motor%20Via%20Analytical%20Magnetic%20Coenergy%20Reconstruction%20Method&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kang,%20Jinsong&rft.date=2020-08-01&rft.volume=56&rft.issue=8&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2020.3002964&rft_dat=%3Cproquest_RIE%3E2426670390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426670390&rft_id=info:pmid/&rft_ieee_id=9118973&rfr_iscdi=true