Boundary-Element Methods for Field Reconstruction in Accelerator Magnets
Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the doma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2020-03, Vol.56 (3), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 56 |
creator | Liebsch, Melvin Russenschuck, Stephan Kurz, Stefan |
description | Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented. |
doi_str_mv | 10.1109/TMAG.2019.2952092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2019_2952092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954937</ieee_id><sourcerecordid>2359921376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aSTbZzbGWfggtgvQe0mRWt2w3Ncke_PduaelpGOZ5Z5iHkGegEwCq3rab6XLCKKgJU4JRxW7ICFQBOaVS3ZIRpVDlqpDFPXmIcT-0hQA6Iqt333fOhL983uIBu5RtMP14F7Pah2zRYOuyL7S-iyn0NjW-y5oum1qLLQaTBmZjvjtM8ZHc1aaN-HSpY7JdzLezVb7-XH7Mpuvccs5SzmEnbMXsDiUVhbWlshwNFAiOGuXkMHaiRC6rsjI1r9E4CqJmO3SSSsfH5PW89hj8b48x6b3vQzdc1IwLpRjwUg4UnCkbfIwBa30MzWH4UgPVJ1_65EuffOmLryHzcs40iHjlKyUKxUv-D1AWZwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359921376</pqid></control><display><type>article</type><title>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</title><source>IEEE Electronic Library (IEL)</source><creator>Liebsch, Melvin ; Russenschuck, Stephan ; Kurz, Stefan</creator><creatorcontrib>Liebsch, Melvin ; Russenschuck, Stephan ; Kurz, Stefan</creatorcontrib><description>Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2019.2952092</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator magnets ; Apertures ; Boundary element method ; boundary value problems ; Boundary-element methods ; Dirichlet problem ; Domains ; Harmonic analysis ; Induction coils ; Integral equations ; Laplace equations ; Magnetic domains ; Magnetic measurement ; magnetic-field measurement ; Magnetism ; Magnetometers ; Magnets ; Mathematical analysis ; Post-production processing ; Reconstruction</subject><ispartof>IEEE transactions on magnetics, 2020-03, Vol.56 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</citedby><cites>FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</cites><orcidid>0000-0003-4926-8078 ; 0000-0002-2022-105X ; 0000-0003-3370-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8954937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liebsch, Melvin</creatorcontrib><creatorcontrib>Russenschuck, Stephan</creatorcontrib><creatorcontrib>Kurz, Stefan</creatorcontrib><title>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.</description><subject>Accelerator magnets</subject><subject>Apertures</subject><subject>Boundary element method</subject><subject>boundary value problems</subject><subject>Boundary-element methods</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Harmonic analysis</subject><subject>Induction coils</subject><subject>Integral equations</subject><subject>Laplace equations</subject><subject>Magnetic domains</subject><subject>Magnetic measurement</subject><subject>magnetic-field measurement</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Magnets</subject><subject>Mathematical analysis</subject><subject>Post-production processing</subject><subject>Reconstruction</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aSTbZzbGWfggtgvQe0mRWt2w3Ncke_PduaelpGOZ5Z5iHkGegEwCq3rab6XLCKKgJU4JRxW7ICFQBOaVS3ZIRpVDlqpDFPXmIcT-0hQA6Iqt333fOhL983uIBu5RtMP14F7Pah2zRYOuyL7S-iyn0NjW-y5oum1qLLQaTBmZjvjtM8ZHc1aaN-HSpY7JdzLezVb7-XH7Mpuvccs5SzmEnbMXsDiUVhbWlshwNFAiOGuXkMHaiRC6rsjI1r9E4CqJmO3SSSsfH5PW89hj8b48x6b3vQzdc1IwLpRjwUg4UnCkbfIwBa30MzWH4UgPVJ1_65EuffOmLryHzcs40iHjlKyUKxUv-D1AWZwg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liebsch, Melvin</creator><creator>Russenschuck, Stephan</creator><creator>Kurz, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4926-8078</orcidid><orcidid>https://orcid.org/0000-0002-2022-105X</orcidid><orcidid>https://orcid.org/0000-0003-3370-7419</orcidid></search><sort><creationdate>20200301</creationdate><title>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</title><author>Liebsch, Melvin ; Russenschuck, Stephan ; Kurz, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerator magnets</topic><topic>Apertures</topic><topic>Boundary element method</topic><topic>boundary value problems</topic><topic>Boundary-element methods</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Harmonic analysis</topic><topic>Induction coils</topic><topic>Integral equations</topic><topic>Laplace equations</topic><topic>Magnetic domains</topic><topic>Magnetic measurement</topic><topic>magnetic-field measurement</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Magnets</topic><topic>Mathematical analysis</topic><topic>Post-production processing</topic><topic>Reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Liebsch, Melvin</creatorcontrib><creatorcontrib>Russenschuck, Stephan</creatorcontrib><creatorcontrib>Kurz, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liebsch, Melvin</au><au>Russenschuck, Stephan</au><au>Kurz, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2019.2952092</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4926-8078</orcidid><orcidid>https://orcid.org/0000-0002-2022-105X</orcidid><orcidid>https://orcid.org/0000-0003-3370-7419</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2020-03, Vol.56 (3), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2019_2952092 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerator magnets Apertures Boundary element method boundary value problems Boundary-element methods Dirichlet problem Domains Harmonic analysis Induction coils Integral equations Laplace equations Magnetic domains Magnetic measurement magnetic-field measurement Magnetism Magnetometers Magnets Mathematical analysis Post-production processing Reconstruction |
title | Boundary-Element Methods for Field Reconstruction in Accelerator Magnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-Element%20Methods%20for%20Field%20Reconstruction%20in%20Accelerator%20Magnets&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Liebsch,%20Melvin&rft.date=2020-03-01&rft.volume=56&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2019.2952092&rft_dat=%3Cproquest_RIE%3E2359921376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359921376&rft_id=info:pmid/&rft_ieee_id=8954937&rfr_iscdi=true |