Boundary-Element Methods for Field Reconstruction in Accelerator Magnets

Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2020-03, Vol.56 (3), p.1-4
Hauptverfasser: Liebsch, Melvin, Russenschuck, Stephan, Kurz, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 56
creator Liebsch, Melvin
Russenschuck, Stephan
Kurz, Stefan
description Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.
doi_str_mv 10.1109/TMAG.2019.2952092
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2019_2952092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8954937</ieee_id><sourcerecordid>2359921376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aSTbZzbGWfggtgvQe0mRWt2w3Ncke_PduaelpGOZ5Z5iHkGegEwCq3rab6XLCKKgJU4JRxW7ICFQBOaVS3ZIRpVDlqpDFPXmIcT-0hQA6Iqt333fOhL983uIBu5RtMP14F7Pah2zRYOuyL7S-iyn0NjW-y5oum1qLLQaTBmZjvjtM8ZHc1aaN-HSpY7JdzLezVb7-XH7Mpuvccs5SzmEnbMXsDiUVhbWlshwNFAiOGuXkMHaiRC6rsjI1r9E4CqJmO3SSSsfH5PW89hj8b48x6b3vQzdc1IwLpRjwUg4UnCkbfIwBa30MzWH4UgPVJ1_65EuffOmLryHzcs40iHjlKyUKxUv-D1AWZwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359921376</pqid></control><display><type>article</type><title>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</title><source>IEEE Electronic Library (IEL)</source><creator>Liebsch, Melvin ; Russenschuck, Stephan ; Kurz, Stefan</creator><creatorcontrib>Liebsch, Melvin ; Russenschuck, Stephan ; Kurz, Stefan</creatorcontrib><description>Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2019.2952092</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerator magnets ; Apertures ; Boundary element method ; boundary value problems ; Boundary-element methods ; Dirichlet problem ; Domains ; Harmonic analysis ; Induction coils ; Integral equations ; Laplace equations ; Magnetic domains ; Magnetic measurement ; magnetic-field measurement ; Magnetism ; Magnetometers ; Magnets ; Mathematical analysis ; Post-production processing ; Reconstruction</subject><ispartof>IEEE transactions on magnetics, 2020-03, Vol.56 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</citedby><cites>FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</cites><orcidid>0000-0003-4926-8078 ; 0000-0002-2022-105X ; 0000-0003-3370-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8954937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8954937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liebsch, Melvin</creatorcontrib><creatorcontrib>Russenschuck, Stephan</creatorcontrib><creatorcontrib>Kurz, Stefan</creatorcontrib><title>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.</description><subject>Accelerator magnets</subject><subject>Apertures</subject><subject>Boundary element method</subject><subject>boundary value problems</subject><subject>Boundary-element methods</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Harmonic analysis</subject><subject>Induction coils</subject><subject>Integral equations</subject><subject>Laplace equations</subject><subject>Magnetic domains</subject><subject>Magnetic measurement</subject><subject>magnetic-field measurement</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Magnets</subject><subject>Mathematical analysis</subject><subject>Post-production processing</subject><subject>Reconstruction</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6aSTbZzbGWfggtgvQe0mRWt2w3Ncke_PduaelpGOZ5Z5iHkGegEwCq3rab6XLCKKgJU4JRxW7ICFQBOaVS3ZIRpVDlqpDFPXmIcT-0hQA6Iqt333fOhL983uIBu5RtMP14F7Pah2zRYOuyL7S-iyn0NjW-y5oum1qLLQaTBmZjvjtM8ZHc1aaN-HSpY7JdzLezVb7-XH7Mpuvccs5SzmEnbMXsDiUVhbWlshwNFAiOGuXkMHaiRC6rsjI1r9E4CqJmO3SSSsfH5PW89hj8b48x6b3vQzdc1IwLpRjwUg4UnCkbfIwBa30MzWH4UgPVJ1_65EuffOmLryHzcs40iHjlKyUKxUv-D1AWZwg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liebsch, Melvin</creator><creator>Russenschuck, Stephan</creator><creator>Kurz, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4926-8078</orcidid><orcidid>https://orcid.org/0000-0002-2022-105X</orcidid><orcidid>https://orcid.org/0000-0003-3370-7419</orcidid></search><sort><creationdate>20200301</creationdate><title>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</title><author>Liebsch, Melvin ; Russenschuck, Stephan ; Kurz, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-31b5c82cbe6054cc79c3ea14e1d0a9d61b5d57e36878af3fead015f2bed606d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerator magnets</topic><topic>Apertures</topic><topic>Boundary element method</topic><topic>boundary value problems</topic><topic>Boundary-element methods</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Harmonic analysis</topic><topic>Induction coils</topic><topic>Integral equations</topic><topic>Laplace equations</topic><topic>Magnetic domains</topic><topic>Magnetic measurement</topic><topic>magnetic-field measurement</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Magnets</topic><topic>Mathematical analysis</topic><topic>Post-production processing</topic><topic>Reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Liebsch, Melvin</creatorcontrib><creatorcontrib>Russenschuck, Stephan</creatorcontrib><creatorcontrib>Kurz, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liebsch, Melvin</au><au>Russenschuck, Stephan</au><au>Kurz, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-Element Methods for Field Reconstruction in Accelerator Magnets</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetic fields in the aperture of particle accelerator magnets can be represented by boundary potentials, exploiting Kirchhoff's integral equation. Depending on the formulation, magnetic measurement data can be represented by the discrete approximations of Dirichlet or Neumann data at the domain boundary. The missing Cauchy data, which are related to the tangential-field components, can then be computed by the boundary-element method (BEM) in a numerical post-processing step. Evaluating the integral equation for field reconstruction inside the domain of interest will reduce measurement uncertainties and approximation errors due to the smoothing property of Green's kernel. Applications to the reconstruction of 2-D fields (integrated quantities from stretched-wire measurements) and 3-D fields (local quantities from measurements with moving induction-coil magnetometers) are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2019.2952092</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4926-8078</orcidid><orcidid>https://orcid.org/0000-0002-2022-105X</orcidid><orcidid>https://orcid.org/0000-0003-3370-7419</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2020-03, Vol.56 (3), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2019_2952092
source IEEE Electronic Library (IEL)
subjects Accelerator magnets
Apertures
Boundary element method
boundary value problems
Boundary-element methods
Dirichlet problem
Domains
Harmonic analysis
Induction coils
Integral equations
Laplace equations
Magnetic domains
Magnetic measurement
magnetic-field measurement
Magnetism
Magnetometers
Magnets
Mathematical analysis
Post-production processing
Reconstruction
title Boundary-Element Methods for Field Reconstruction in Accelerator Magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-Element%20Methods%20for%20Field%20Reconstruction%20in%20Accelerator%20Magnets&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Liebsch,%20Melvin&rft.date=2020-03-01&rft.volume=56&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2019.2952092&rft_dat=%3Cproquest_RIE%3E2359921376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359921376&rft_id=info:pmid/&rft_ieee_id=8954937&rfr_iscdi=true