Analysis of Current Density Inside Human Body Using Geometric Multi-Grid Method

This paper describes the effectiveness of a geometric multi-grid (GMG) method in current density analysis using numerical human body models. The scalar potential finite difference (SPFD) method is used as a current analysis method inside a human body in the low-frequency domain, and studies have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2019-06, Vol.55 (6), p.1-5
Hauptverfasser: Nomura, Masamune, Tarao, Hiroo, Takei, Amane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 6
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 55
creator Nomura, Masamune
Tarao, Hiroo
Takei, Amane
description This paper describes the effectiveness of a geometric multi-grid (GMG) method in current density analysis using numerical human body models. The scalar potential finite difference (SPFD) method is used as a current analysis method inside a human body in the low-frequency domain, and studies have been conducted to solve faster large-scale linear equations made by the SPFD method. In the previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve linear equations faster. However, even though the block ICCG method is applied, many iterations are still needed. Therefore, in this research, the GMG method is considered as an effective solver for the problem. GMG method is developed and evaluated performances comparing with the block ICCG method with multi-color (MC) ordering in terms of computation time and the number of iterations. The results show that the number of iterations needed for GMG method is much smaller than that for the block ICCG and the ICCG with MC ordering. In addition, computation times are much shorter, depending on the number of threads and the number of coarse grids. Also, by using MC ordering, the scalability of the GMG method can be greatly improved.
doi_str_mv 10.1109/TMAG.2019.2903320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2019_2903320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8678481</ieee_id><sourcerecordid>2226159903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a0829564ca841c6b570d9d6aa53f51215fcba1fa677e00c8ff84a26f800b25113</originalsourceid><addsrcrecordid>eNo9kMFPwjAYxRujiYj-AcZLE8_D7-vWrj0i6iCBcIFzU7ZWS2DDdjvw37sF4unlJe-95P0IeUaYIIJ626ymxYQBqglTkKYMbsgIVYYJgFC3ZASAMlGZyO7JQ4z73mYcYUTW09ocztFH2jg660KwdUs_bB19e6aLXipL593R1PS9qc50G339TQvbHG0bfElX3aH1SRF8RVe2_WmqR3LnzCHap6uOyfbrczObJ8t1sZhNl0mZctUmBiRTXGSlkRmWYsdzqFQljOGp48iQu3Jn0BmR5xaglM7JzDDhJMCOccR0TF4vu6fQ_HY2tnrfdKH_EjVjTCBXA4YxwUuqDE2MwTp9Cv5owlkj6IGbHrjpgZu-cus7L5eOt9b-56XIZSYx_QOiBGfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226159903</pqid></control><display><type>article</type><title>Analysis of Current Density Inside Human Body Using Geometric Multi-Grid Method</title><source>IEEE Electronic Library (IEL)</source><creator>Nomura, Masamune ; Tarao, Hiroo ; Takei, Amane</creator><creatorcontrib>Nomura, Masamune ; Tarao, Hiroo ; Takei, Amane</creatorcontrib><description>This paper describes the effectiveness of a geometric multi-grid (GMG) method in current density analysis using numerical human body models. The scalar potential finite difference (SPFD) method is used as a current analysis method inside a human body in the low-frequency domain, and studies have been conducted to solve faster large-scale linear equations made by the SPFD method. In the previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve linear equations faster. However, even though the block ICCG method is applied, many iterations are still needed. Therefore, in this research, the GMG method is considered as an effective solver for the problem. GMG method is developed and evaluated performances comparing with the block ICCG method with multi-color (MC) ordering in terms of computation time and the number of iterations. The results show that the number of iterations needed for GMG method is much smaller than that for the block ICCG and the ICCG with MC ordering. In addition, computation times are much shorter, depending on the number of threads and the number of coarse grids. Also, by using MC ordering, the scalability of the GMG method can be greatly improved.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2019.2903320</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Block incomplete Cholesky conjugate gradients (ICCG) ; Computation ; Computational modeling ; Conductivity ; Conjugate gradient method ; Convergence ; Current density ; Finite difference method ; geometric multi-grid (GMG) method ; Grid method ; Human body ; Linear equations ; Magnetism ; Mathematical model ; Mathematical models ; multi-color (MC) ordering ; Numerical models ; Scalability ; scalar potential finite difference (SPFD) method</subject><ispartof>IEEE transactions on magnetics, 2019-06, Vol.55 (6), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a0829564ca841c6b570d9d6aa53f51215fcba1fa677e00c8ff84a26f800b25113</citedby><cites>FETCH-LOGICAL-c359t-a0829564ca841c6b570d9d6aa53f51215fcba1fa677e00c8ff84a26f800b25113</cites><orcidid>0000-0001-9014-8727 ; 0000-0002-0692-2028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8678481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8678481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nomura, Masamune</creatorcontrib><creatorcontrib>Tarao, Hiroo</creatorcontrib><creatorcontrib>Takei, Amane</creatorcontrib><title>Analysis of Current Density Inside Human Body Using Geometric Multi-Grid Method</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper describes the effectiveness of a geometric multi-grid (GMG) method in current density analysis using numerical human body models. The scalar potential finite difference (SPFD) method is used as a current analysis method inside a human body in the low-frequency domain, and studies have been conducted to solve faster large-scale linear equations made by the SPFD method. In the previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve linear equations faster. However, even though the block ICCG method is applied, many iterations are still needed. Therefore, in this research, the GMG method is considered as an effective solver for the problem. GMG method is developed and evaluated performances comparing with the block ICCG method with multi-color (MC) ordering in terms of computation time and the number of iterations. The results show that the number of iterations needed for GMG method is much smaller than that for the block ICCG and the ICCG with MC ordering. In addition, computation times are much shorter, depending on the number of threads and the number of coarse grids. Also, by using MC ordering, the scalability of the GMG method can be greatly improved.</description><subject>Biological system modeling</subject><subject>Block incomplete Cholesky conjugate gradients (ICCG)</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Conductivity</subject><subject>Conjugate gradient method</subject><subject>Convergence</subject><subject>Current density</subject><subject>Finite difference method</subject><subject>geometric multi-grid (GMG) method</subject><subject>Grid method</subject><subject>Human body</subject><subject>Linear equations</subject><subject>Magnetism</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>multi-color (MC) ordering</subject><subject>Numerical models</subject><subject>Scalability</subject><subject>scalar potential finite difference (SPFD) method</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFPwjAYxRujiYj-AcZLE8_D7-vWrj0i6iCBcIFzU7ZWS2DDdjvw37sF4unlJe-95P0IeUaYIIJ626ymxYQBqglTkKYMbsgIVYYJgFC3ZASAMlGZyO7JQ4z73mYcYUTW09ocztFH2jg660KwdUs_bB19e6aLXipL593R1PS9qc50G339TQvbHG0bfElX3aH1SRF8RVe2_WmqR3LnzCHap6uOyfbrczObJ8t1sZhNl0mZctUmBiRTXGSlkRmWYsdzqFQljOGp48iQu3Jn0BmR5xaglM7JzDDhJMCOccR0TF4vu6fQ_HY2tnrfdKH_EjVjTCBXA4YxwUuqDE2MwTp9Cv5owlkj6IGbHrjpgZu-cus7L5eOt9b-56XIZSYx_QOiBGfy</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Nomura, Masamune</creator><creator>Tarao, Hiroo</creator><creator>Takei, Amane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9014-8727</orcidid><orcidid>https://orcid.org/0000-0002-0692-2028</orcidid></search><sort><creationdate>20190601</creationdate><title>Analysis of Current Density Inside Human Body Using Geometric Multi-Grid Method</title><author>Nomura, Masamune ; Tarao, Hiroo ; Takei, Amane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a0829564ca841c6b570d9d6aa53f51215fcba1fa677e00c8ff84a26f800b25113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological system modeling</topic><topic>Block incomplete Cholesky conjugate gradients (ICCG)</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Conductivity</topic><topic>Conjugate gradient method</topic><topic>Convergence</topic><topic>Current density</topic><topic>Finite difference method</topic><topic>geometric multi-grid (GMG) method</topic><topic>Grid method</topic><topic>Human body</topic><topic>Linear equations</topic><topic>Magnetism</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>multi-color (MC) ordering</topic><topic>Numerical models</topic><topic>Scalability</topic><topic>scalar potential finite difference (SPFD) method</topic><toplevel>online_resources</toplevel><creatorcontrib>Nomura, Masamune</creatorcontrib><creatorcontrib>Tarao, Hiroo</creatorcontrib><creatorcontrib>Takei, Amane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nomura, Masamune</au><au>Tarao, Hiroo</au><au>Takei, Amane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Current Density Inside Human Body Using Geometric Multi-Grid Method</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>55</volume><issue>6</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper describes the effectiveness of a geometric multi-grid (GMG) method in current density analysis using numerical human body models. The scalar potential finite difference (SPFD) method is used as a current analysis method inside a human body in the low-frequency domain, and studies have been conducted to solve faster large-scale linear equations made by the SPFD method. In the previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve linear equations faster. However, even though the block ICCG method is applied, many iterations are still needed. Therefore, in this research, the GMG method is considered as an effective solver for the problem. GMG method is developed and evaluated performances comparing with the block ICCG method with multi-color (MC) ordering in terms of computation time and the number of iterations. The results show that the number of iterations needed for GMG method is much smaller than that for the block ICCG and the ICCG with MC ordering. In addition, computation times are much shorter, depending on the number of threads and the number of coarse grids. Also, by using MC ordering, the scalability of the GMG method can be greatly improved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2019.2903320</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9014-8727</orcidid><orcidid>https://orcid.org/0000-0002-0692-2028</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2019-06, Vol.55 (6), p.1-5
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2019_2903320
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Block incomplete Cholesky conjugate gradients (ICCG)
Computation
Computational modeling
Conductivity
Conjugate gradient method
Convergence
Current density
Finite difference method
geometric multi-grid (GMG) method
Grid method
Human body
Linear equations
Magnetism
Mathematical model
Mathematical models
multi-color (MC) ordering
Numerical models
Scalability
scalar potential finite difference (SPFD) method
title Analysis of Current Density Inside Human Body Using Geometric Multi-Grid Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Current%20Density%20Inside%20Human%20Body%20Using%20Geometric%20Multi-Grid%20Method&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Nomura,%20Masamune&rft.date=2019-06-01&rft.volume=55&rft.issue=6&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2019.2903320&rft_dat=%3Cproquest_RIE%3E2226159903%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226159903&rft_id=info:pmid/&rft_ieee_id=8678481&rfr_iscdi=true