Experimental Demonstration of Novel Hybrid Microwave Absorbing Coatings Using Particle-Size-Controlled Hard-Soft Ferrite
The development of a thin and broadband microwave absorber using the microwave absorbing material (MAM) alone is a very challenging task for the researchers and industries. Therefore, a technique for developing a novel hybrid microwave absorbing coating (MAC) using particle-size-controlled hard-soft...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2018-11, Vol.54 (11), p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 54 |
creator | Panwar, Ravi Puthucheri, Smitha Singh, Dharmendra |
description | The development of a thin and broadband microwave absorber using the microwave absorbing material (MAM) alone is a very challenging task for the researchers and industries. Therefore, a technique for developing a novel hybrid microwave absorbing coating (MAC) using particle-size-controlled hard-soft ferrites with optimized compositions is described and experimentally validated. The novelty of this paper is the possibility of enhancing and tuning the reflection loss (RL) properties of traditional MAMs by simply adjusting their particle size. The main target of this paper is to obtain wideband absorption corresponding to RL ≤ −10 dB and a lower coating thickness (≤ 2 mm). First, ferrite nanoparticles are synthesized and subsequently grown into distinct shapes and sizes by giving judicious heat treatment using a "bottom up" nanofabrication approach. Furthermore, these distinctly shaped and sized particles, i.e., spherical and flaky (20-30 nm), hexagonal (80-100 nm), and pyramidal (200-250 nm), are blended with one another in different proportions (1:1:1, 2:1:1, 1:2:1, and 1:1:2). An extensive morphological and electromagnetic (EM) characterization is carried out. An efficient theoretical and empirical model is used to investigate the EM properties of the heterogeneous MAC with respect to frequency and particle size. A fabricated MAC possesses an RL of −33.5 dB at 10.8 GHz with −10 dB absorption bandwidth of 4.2 GHz (covering the entire X-band region). Moreover, the ferrite layer coating thickness is only 2 mm. A good correlation between theoretical and measured results demonstrates the potential of the adopted approach for various practical EM applications. |
doi_str_mv | 10.1109/TMAG.2018.2828782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2018_2828782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357596</ieee_id><sourcerecordid>2121940921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-179d9e4526a8654e0ccce6e62d5261ebc9f0245bb4806852a6f58b2cea5e5bfb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpthO79rIKjyJRQGq7juxkUrlK42K7vL4eR0WsRnfm3hnNQeiKkjGlRN0u59PHMSNUjplkciLZERpRVdCMEKGO0YikUaYKUZyisxA2SRackhH6uv_agbdb6KPu8B1sXR-i19G6HrsWv7gP6PDs23jb4LmtvfvUH4CnJjhvbL_GpUvefh3wKgzyTfto6w6yhf2BrHR99K7roMEz7Zts4dqIH8B7G-ECnbS6C3D5V8_R6uF-Wc6y59fHp3L6nNVM5TGjE9UoKDgTWgpeAKnrGgQI1qQWBVOrlrCCG1NIIiRnWrRcGlaD5sBNa_JzdHPYu_PufQ8hVhu39306WTHKEiKiGE0uenClD0Pw0Fa7BEX774qSagBcDYCrAXD1Bzhlrg8ZCwD_fpnzCVci_wVoDHjl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121940921</pqid></control><display><type>article</type><title>Experimental Demonstration of Novel Hybrid Microwave Absorbing Coatings Using Particle-Size-Controlled Hard-Soft Ferrite</title><source>IEEE Electronic Library (IEL)</source><creator>Panwar, Ravi ; Puthucheri, Smitha ; Singh, Dharmendra</creator><creatorcontrib>Panwar, Ravi ; Puthucheri, Smitha ; Singh, Dharmendra</creatorcontrib><description>The development of a thin and broadband microwave absorber using the microwave absorbing material (MAM) alone is a very challenging task for the researchers and industries. Therefore, a technique for developing a novel hybrid microwave absorbing coating (MAC) using particle-size-controlled hard-soft ferrites with optimized compositions is described and experimentally validated. The novelty of this paper is the possibility of enhancing and tuning the reflection loss (RL) properties of traditional MAMs by simply adjusting their particle size. The main target of this paper is to obtain wideband absorption corresponding to RL ≤ −10 dB and a lower coating thickness (≤ 2 mm). First, ferrite nanoparticles are synthesized and subsequently grown into distinct shapes and sizes by giving judicious heat treatment using a "bottom up" nanofabrication approach. Furthermore, these distinctly shaped and sized particles, i.e., spherical and flaky (20-30 nm), hexagonal (80-100 nm), and pyramidal (200-250 nm), are blended with one another in different proportions (1:1:1, 2:1:1, 1:2:1, and 1:1:2). An extensive morphological and electromagnetic (EM) characterization is carried out. An efficient theoretical and empirical model is used to investigate the EM properties of the heterogeneous MAC with respect to frequency and particle size. A fabricated MAC possesses an RL of −33.5 dB at 10.8 GHz with −10 dB absorption bandwidth of 4.2 GHz (covering the entire X-band region). Moreover, the ferrite layer coating thickness is only 2 mm. A good correlation between theoretical and measured results demonstrates the potential of the adopted approach for various practical EM applications.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2828782</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Bandwidth ; Bandwidths ; Broadband ; Coatings ; Correlation analysis ; Electromagnetic heating ; Ferrite ; Ferrites ; Heat treatment ; heterogeneous composite ; Magnetism ; microwave absorbing coating (MAC) ; microwave absorbing material (MAM) ; Microwave FET integrated circuits ; Microwave theory and techniques ; Morphology ; Nanofabrication ; Nanoparticles ; Particle size ; Thickness</subject><ispartof>IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-179d9e4526a8654e0ccce6e62d5261ebc9f0245bb4806852a6f58b2cea5e5bfb3</citedby><cites>FETCH-LOGICAL-c293t-179d9e4526a8654e0ccce6e62d5261ebc9f0245bb4806852a6f58b2cea5e5bfb3</cites><orcidid>0000-0002-9015-0891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Panwar, Ravi</creatorcontrib><creatorcontrib>Puthucheri, Smitha</creatorcontrib><creatorcontrib>Singh, Dharmendra</creatorcontrib><title>Experimental Demonstration of Novel Hybrid Microwave Absorbing Coatings Using Particle-Size-Controlled Hard-Soft Ferrite</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The development of a thin and broadband microwave absorber using the microwave absorbing material (MAM) alone is a very challenging task for the researchers and industries. Therefore, a technique for developing a novel hybrid microwave absorbing coating (MAC) using particle-size-controlled hard-soft ferrites with optimized compositions is described and experimentally validated. The novelty of this paper is the possibility of enhancing and tuning the reflection loss (RL) properties of traditional MAMs by simply adjusting their particle size. The main target of this paper is to obtain wideband absorption corresponding to RL ≤ −10 dB and a lower coating thickness (≤ 2 mm). First, ferrite nanoparticles are synthesized and subsequently grown into distinct shapes and sizes by giving judicious heat treatment using a "bottom up" nanofabrication approach. Furthermore, these distinctly shaped and sized particles, i.e., spherical and flaky (20-30 nm), hexagonal (80-100 nm), and pyramidal (200-250 nm), are blended with one another in different proportions (1:1:1, 2:1:1, 1:2:1, and 1:1:2). An extensive morphological and electromagnetic (EM) characterization is carried out. An efficient theoretical and empirical model is used to investigate the EM properties of the heterogeneous MAC with respect to frequency and particle size. A fabricated MAC possesses an RL of −33.5 dB at 10.8 GHz with −10 dB absorption bandwidth of 4.2 GHz (covering the entire X-band region). Moreover, the ferrite layer coating thickness is only 2 mm. A good correlation between theoretical and measured results demonstrates the potential of the adopted approach for various practical EM applications.</description><subject>Absorption</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Coatings</subject><subject>Correlation analysis</subject><subject>Electromagnetic heating</subject><subject>Ferrite</subject><subject>Ferrites</subject><subject>Heat treatment</subject><subject>heterogeneous composite</subject><subject>Magnetism</subject><subject>microwave absorbing coating (MAC)</subject><subject>microwave absorbing material (MAM)</subject><subject>Microwave FET integrated circuits</subject><subject>Microwave theory and techniques</subject><subject>Morphology</subject><subject>Nanofabrication</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Thickness</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpthO79rIKjyJRQGq7juxkUrlK42K7vL4eR0WsRnfm3hnNQeiKkjGlRN0u59PHMSNUjplkciLZERpRVdCMEKGO0YikUaYKUZyisxA2SRackhH6uv_agbdb6KPu8B1sXR-i19G6HrsWv7gP6PDs23jb4LmtvfvUH4CnJjhvbL_GpUvefh3wKgzyTfto6w6yhf2BrHR99K7roMEz7Zts4dqIH8B7G-ECnbS6C3D5V8_R6uF-Wc6y59fHp3L6nNVM5TGjE9UoKDgTWgpeAKnrGgQI1qQWBVOrlrCCG1NIIiRnWrRcGlaD5sBNa_JzdHPYu_PufQ8hVhu39306WTHKEiKiGE0uenClD0Pw0Fa7BEX774qSagBcDYCrAXD1Bzhlrg8ZCwD_fpnzCVci_wVoDHjl</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Panwar, Ravi</creator><creator>Puthucheri, Smitha</creator><creator>Singh, Dharmendra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9015-0891</orcidid></search><sort><creationdate>20181101</creationdate><title>Experimental Demonstration of Novel Hybrid Microwave Absorbing Coatings Using Particle-Size-Controlled Hard-Soft Ferrite</title><author>Panwar, Ravi ; Puthucheri, Smitha ; Singh, Dharmendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-179d9e4526a8654e0ccce6e62d5261ebc9f0245bb4806852a6f58b2cea5e5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Coatings</topic><topic>Correlation analysis</topic><topic>Electromagnetic heating</topic><topic>Ferrite</topic><topic>Ferrites</topic><topic>Heat treatment</topic><topic>heterogeneous composite</topic><topic>Magnetism</topic><topic>microwave absorbing coating (MAC)</topic><topic>microwave absorbing material (MAM)</topic><topic>Microwave FET integrated circuits</topic><topic>Microwave theory and techniques</topic><topic>Morphology</topic><topic>Nanofabrication</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Thickness</topic><toplevel>online_resources</toplevel><creatorcontrib>Panwar, Ravi</creatorcontrib><creatorcontrib>Puthucheri, Smitha</creatorcontrib><creatorcontrib>Singh, Dharmendra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panwar, Ravi</au><au>Puthucheri, Smitha</au><au>Singh, Dharmendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Demonstration of Novel Hybrid Microwave Absorbing Coatings Using Particle-Size-Controlled Hard-Soft Ferrite</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The development of a thin and broadband microwave absorber using the microwave absorbing material (MAM) alone is a very challenging task for the researchers and industries. Therefore, a technique for developing a novel hybrid microwave absorbing coating (MAC) using particle-size-controlled hard-soft ferrites with optimized compositions is described and experimentally validated. The novelty of this paper is the possibility of enhancing and tuning the reflection loss (RL) properties of traditional MAMs by simply adjusting their particle size. The main target of this paper is to obtain wideband absorption corresponding to RL ≤ −10 dB and a lower coating thickness (≤ 2 mm). First, ferrite nanoparticles are synthesized and subsequently grown into distinct shapes and sizes by giving judicious heat treatment using a "bottom up" nanofabrication approach. Furthermore, these distinctly shaped and sized particles, i.e., spherical and flaky (20-30 nm), hexagonal (80-100 nm), and pyramidal (200-250 nm), are blended with one another in different proportions (1:1:1, 2:1:1, 1:2:1, and 1:1:2). An extensive morphological and electromagnetic (EM) characterization is carried out. An efficient theoretical and empirical model is used to investigate the EM properties of the heterogeneous MAC with respect to frequency and particle size. A fabricated MAC possesses an RL of −33.5 dB at 10.8 GHz with −10 dB absorption bandwidth of 4.2 GHz (covering the entire X-band region). Moreover, the ferrite layer coating thickness is only 2 mm. A good correlation between theoretical and measured results demonstrates the potential of the adopted approach for various practical EM applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2828782</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9015-0891</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2018_2828782 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Bandwidth Bandwidths Broadband Coatings Correlation analysis Electromagnetic heating Ferrite Ferrites Heat treatment heterogeneous composite Magnetism microwave absorbing coating (MAC) microwave absorbing material (MAM) Microwave FET integrated circuits Microwave theory and techniques Morphology Nanofabrication Nanoparticles Particle size Thickness |
title | Experimental Demonstration of Novel Hybrid Microwave Absorbing Coatings Using Particle-Size-Controlled Hard-Soft Ferrite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Demonstration%20of%20Novel%20Hybrid%20Microwave%20Absorbing%20Coatings%20Using%20Particle-Size-Controlled%20Hard-Soft%20Ferrite&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Panwar,%20Ravi&rft.date=2018-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2828782&rft_dat=%3Cproquest_RIE%3E2121940921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121940921&rft_id=info:pmid/&rft_ieee_id=8357596&rfr_iscdi=true |