Sources and Impact of Media Thermal Fluctuations in Heat-Assisted Magnetic Recording
Optical and thermal modeling is used to understand and quantify the contribution of different sources of temperature fluctuations in heat-assisted magnetic recording. The dominant sources of temperature fluctuations are spatial variations of the absorption in the recording layer and spatial variatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2018-11, Vol.54 (11), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 54 |
creator | Jubert, Pierre-Olivier Papusoi, Cristian |
description | Optical and thermal modeling is used to understand and quantify the contribution of different sources of temperature fluctuations in heat-assisted magnetic recording. The dominant sources of temperature fluctuations are spatial variations of the absorption in the recording layer and spatial variations of the underlayer effective thermal boundary resistance. They result in an increased transition jitter that is proportional to the amplitude of the source variations. Besides, the transition jitter amplitude strongly depends on the length scale of the source fluctuations: fluctuations with smaller periods lead to reduced jitter as a result of in-plane heat spreading within the medium layers. Temperature fluctuations are also proportional to the input laser power or to the average temperature gradient. Consequently, transition jitter arising from temperature fluctuations does not change with improved temperature gradients, in contrast to jitter resulting from Curie temperature distributions. Interface roughness is also investigated as it is a practical source of both optical absorption fluctuations and thermal property fluctuations. It is found to lead to sizeable jitter, whose amplitude is proportional to the roughness amplitude and reduces at small roughness wavelengths. |
doi_str_mv | 10.1109/TMAG.2018.2827040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2018_2827040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359442</ieee_id><sourcerecordid>2121938076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8e0f7ac4f60942b34562413a92a7cfe868299d0e84b43183684bde0237b650e63</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefF6cd22yMhAiYQE13PTenOYgns4rZ78N-7BOJpZjLvOx8PIY8MJoyBeSnX08WEA9MTrnkBEq7IiBnJMgBlrskIhlZmpJK35C7G3VDKnMGIlJ9t33mM1DUVfTscnU-0rekaq-Bo-Y3dwe3pfN_71LsU2ibS0NAlupRNYwwxYUXXbttgCp5-oG-7KjTbe3JTu33Eh0sck6_5azlbZqv3xdtsusq8yE3KNEJdOC9rBUbyjZC54pIJZ7grfI1aaW5MBajlRgqmhRqSCoGLYqNyQCXG5Pk899i1Pz3GZHfDN82w0nLGmREaipOKnVW-a2PssLbHLhxc92sZ2BM8e4JnT_DsBd7geTp7AiL-6_VwtpRc_AHYq2lW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121938076</pqid></control><display><type>article</type><title>Sources and Impact of Media Thermal Fluctuations in Heat-Assisted Magnetic Recording</title><source>IEEE Electronic Library (IEL)</source><creator>Jubert, Pierre-Olivier ; Papusoi, Cristian</creator><creatorcontrib>Jubert, Pierre-Olivier ; Papusoi, Cristian</creatorcontrib><description>Optical and thermal modeling is used to understand and quantify the contribution of different sources of temperature fluctuations in heat-assisted magnetic recording. The dominant sources of temperature fluctuations are spatial variations of the absorption in the recording layer and spatial variations of the underlayer effective thermal boundary resistance. They result in an increased transition jitter that is proportional to the amplitude of the source variations. Besides, the transition jitter amplitude strongly depends on the length scale of the source fluctuations: fluctuations with smaller periods lead to reduced jitter as a result of in-plane heat spreading within the medium layers. Temperature fluctuations are also proportional to the input laser power or to the average temperature gradient. Consequently, transition jitter arising from temperature fluctuations does not change with improved temperature gradients, in contrast to jitter resulting from Curie temperature distributions. Interface roughness is also investigated as it is a practical source of both optical absorption fluctuations and thermal property fluctuations. It is found to lead to sizeable jitter, whose amplitude is proportional to the roughness amplitude and reduces at small roughness wavelengths.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2827040</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Amplitudes ; Curie temperature ; Heat ; Heat-assisted magnetic recording ; Heat-assisted magnetic recording (HAMR) ; Heating systems ; Interface roughness ; Jitter ; Magnetic recording ; Magnetism ; Mathematical models ; Modulation ; Optical properties ; Temperature ; Temperature gradients ; Thermal analysis ; thermal fluctuations ; Thermal resistance ; transition jitter ; Variation ; Vibration</subject><ispartof>IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8e0f7ac4f60942b34562413a92a7cfe868299d0e84b43183684bde0237b650e63</citedby><cites>FETCH-LOGICAL-c359t-8e0f7ac4f60942b34562413a92a7cfe868299d0e84b43183684bde0237b650e63</cites><orcidid>0000-0001-5372-0392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8359442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jubert, Pierre-Olivier</creatorcontrib><creatorcontrib>Papusoi, Cristian</creatorcontrib><title>Sources and Impact of Media Thermal Fluctuations in Heat-Assisted Magnetic Recording</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Optical and thermal modeling is used to understand and quantify the contribution of different sources of temperature fluctuations in heat-assisted magnetic recording. The dominant sources of temperature fluctuations are spatial variations of the absorption in the recording layer and spatial variations of the underlayer effective thermal boundary resistance. They result in an increased transition jitter that is proportional to the amplitude of the source variations. Besides, the transition jitter amplitude strongly depends on the length scale of the source fluctuations: fluctuations with smaller periods lead to reduced jitter as a result of in-plane heat spreading within the medium layers. Temperature fluctuations are also proportional to the input laser power or to the average temperature gradient. Consequently, transition jitter arising from temperature fluctuations does not change with improved temperature gradients, in contrast to jitter resulting from Curie temperature distributions. Interface roughness is also investigated as it is a practical source of both optical absorption fluctuations and thermal property fluctuations. It is found to lead to sizeable jitter, whose amplitude is proportional to the roughness amplitude and reduces at small roughness wavelengths.</description><subject>Absorption</subject><subject>Amplitudes</subject><subject>Curie temperature</subject><subject>Heat</subject><subject>Heat-assisted magnetic recording</subject><subject>Heat-assisted magnetic recording (HAMR)</subject><subject>Heating systems</subject><subject>Interface roughness</subject><subject>Jitter</subject><subject>Magnetic recording</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>Optical properties</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermal analysis</subject><subject>thermal fluctuations</subject><subject>Thermal resistance</subject><subject>transition jitter</subject><subject>Variation</subject><subject>Vibration</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefF6cd22yMhAiYQE13PTenOYgns4rZ78N-7BOJpZjLvOx8PIY8MJoyBeSnX08WEA9MTrnkBEq7IiBnJMgBlrskIhlZmpJK35C7G3VDKnMGIlJ9t33mM1DUVfTscnU-0rekaq-Bo-Y3dwe3pfN_71LsU2ibS0NAlupRNYwwxYUXXbttgCp5-oG-7KjTbe3JTu33Eh0sck6_5azlbZqv3xdtsusq8yE3KNEJdOC9rBUbyjZC54pIJZ7grfI1aaW5MBajlRgqmhRqSCoGLYqNyQCXG5Pk899i1Pz3GZHfDN82w0nLGmREaipOKnVW-a2PssLbHLhxc92sZ2BM8e4JnT_DsBd7geTp7AiL-6_VwtpRc_AHYq2lW</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jubert, Pierre-Olivier</creator><creator>Papusoi, Cristian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5372-0392</orcidid></search><sort><creationdate>20181101</creationdate><title>Sources and Impact of Media Thermal Fluctuations in Heat-Assisted Magnetic Recording</title><author>Jubert, Pierre-Olivier ; Papusoi, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8e0f7ac4f60942b34562413a92a7cfe868299d0e84b43183684bde0237b650e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Amplitudes</topic><topic>Curie temperature</topic><topic>Heat</topic><topic>Heat-assisted magnetic recording</topic><topic>Heat-assisted magnetic recording (HAMR)</topic><topic>Heating systems</topic><topic>Interface roughness</topic><topic>Jitter</topic><topic>Magnetic recording</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>Optical properties</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermal analysis</topic><topic>thermal fluctuations</topic><topic>Thermal resistance</topic><topic>transition jitter</topic><topic>Variation</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Jubert, Pierre-Olivier</creatorcontrib><creatorcontrib>Papusoi, Cristian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jubert, Pierre-Olivier</au><au>Papusoi, Cristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sources and Impact of Media Thermal Fluctuations in Heat-Assisted Magnetic Recording</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>54</volume><issue>11</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Optical and thermal modeling is used to understand and quantify the contribution of different sources of temperature fluctuations in heat-assisted magnetic recording. The dominant sources of temperature fluctuations are spatial variations of the absorption in the recording layer and spatial variations of the underlayer effective thermal boundary resistance. They result in an increased transition jitter that is proportional to the amplitude of the source variations. Besides, the transition jitter amplitude strongly depends on the length scale of the source fluctuations: fluctuations with smaller periods lead to reduced jitter as a result of in-plane heat spreading within the medium layers. Temperature fluctuations are also proportional to the input laser power or to the average temperature gradient. Consequently, transition jitter arising from temperature fluctuations does not change with improved temperature gradients, in contrast to jitter resulting from Curie temperature distributions. Interface roughness is also investigated as it is a practical source of both optical absorption fluctuations and thermal property fluctuations. It is found to lead to sizeable jitter, whose amplitude is proportional to the roughness amplitude and reduces at small roughness wavelengths.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2827040</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5372-0392</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2018-11, Vol.54 (11), p.1-5 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2018_2827040 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Amplitudes Curie temperature Heat Heat-assisted magnetic recording Heat-assisted magnetic recording (HAMR) Heating systems Interface roughness Jitter Magnetic recording Magnetism Mathematical models Modulation Optical properties Temperature Temperature gradients Thermal analysis thermal fluctuations Thermal resistance transition jitter Variation Vibration |
title | Sources and Impact of Media Thermal Fluctuations in Heat-Assisted Magnetic Recording |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sources%20and%20Impact%20of%20Media%20Thermal%20Fluctuations%20in%20Heat-Assisted%20Magnetic%20Recording&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Jubert,%20Pierre-Olivier&rft.date=2018-11-01&rft.volume=54&rft.issue=11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2827040&rft_dat=%3Cproquest_RIE%3E2121938076%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121938076&rft_id=info:pmid/&rft_ieee_id=8359442&rfr_iscdi=true |