Characterization of Electrical Conductivity of Anisotropic CFRP Materials by Means of Induction Thermography Technique
Numerical simulations by means of finite elements are used to investigate the capacities of the induction thermography technique for the characterization of electrical conductivities of unidirectional carbon fiber reinforced polymer (CFRP) materials. A coupled electromagnetic-thermal model is presen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2018-03, Vol.54 (3), p.1-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 54 |
creator | Bui, H. K. Senghor, F. D. Wasselynck, G. Trichet, D. Fouladgar, J. Lee, K. Berthiau, G. |
description | Numerical simulations by means of finite elements are used to investigate the capacities of the induction thermography technique for the characterization of electrical conductivities of unidirectional carbon fiber reinforced polymer (CFRP) materials. A coupled electromagnetic-thermal model is presented using hexahedral elements to deal with the thin region of fully anisotropic physical properties. Eddy-current problem is solved using the {{T}} - \Omega formulation to deduce heat source density power. Transient thermal problem is solved with a fixed time step. An error minimization-based method is presented to identify the electrical resistivity of unidirectional CFRP from the induction thermography measurement. |
doi_str_mv | 10.1109/TMAG.2017.2742979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2017_2742979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8013804</ieee_id><sourcerecordid>2007209789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2f63cc23980d94f90a6072242958e8a78cb181352ca753322fd9dd0addf9b0443</originalsourceid><addsrcrecordid>eNo9kVtLwzAYhoMoOKc_QLwpeOVF55dD1-RylJ1gQ5F5HbI0tRlbM9NuUH-9KR27Ckme580XXoSeMYwwBvG-WU_mIwI4HZGUEZGKGzTAguEYYCxu0QAA81iwMbtHD3W9C1uWYBigc1Yqr3RjvP1TjXVV5Ipouje68VarfZS5Kj_pxp5t03ZXk8rWrvHuaHWUzb4-o7XqXLWvo20brY2q6g5b9laI25TGH9yPV8eyjTZGl5X9PZlHdFcExzxd1iH6nk032SJefcyX2WQVaypoE5NiTLUmVHDIBSsEqDGkhIQPJtxwlXK9xRzThGiVJpQSUuQiz0HleSG2wBgdorc-t1R7efT2oHwrnbJyMVnJ7gwYpIwn7IwD-9qzR-_CiHUjd-7kqzCeJBCeBZFyESjcU9q7uvamuMZikF0VsqtCdlXISxXBeekda4y58hww5cDoP7JhhNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007209789</pqid></control><display><type>article</type><title>Characterization of Electrical Conductivity of Anisotropic CFRP Materials by Means of Induction Thermography Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Bui, H. K. ; Senghor, F. D. ; Wasselynck, G. ; Trichet, D. ; Fouladgar, J. ; Lee, K. ; Berthiau, G.</creator><creatorcontrib>Bui, H. K. ; Senghor, F. D. ; Wasselynck, G. ; Trichet, D. ; Fouladgar, J. ; Lee, K. ; Berthiau, G.</creatorcontrib><description><![CDATA[Numerical simulations by means of finite elements are used to investigate the capacities of the induction thermography technique for the characterization of electrical conductivities of unidirectional carbon fiber reinforced polymer (CFRP) materials. A coupled electromagnetic-thermal model is presented using hexahedral elements to deal with the thin region of fully anisotropic physical properties. Eddy-current problem is solved using the <inline-formula> <tex-math notation="LaTeX"> {{T}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> formulation to deduce heat source density power. Transient thermal problem is solved with a fixed time step. An error minimization-based method is presented to identify the electrical resistivity of unidirectional CFRP from the induction thermography measurement.]]></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2742979</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropic magnetoresistance ; Carbon ; Carbon fiber reinforced plastics ; Carbon fiber reinforced polymer (CFRP) ; Computer simulation ; Conductivity ; coupled model ; Eddy current testing ; Eddy currents ; electrical conductivity characterization ; Electrical properties ; Electrical resistivity ; Electromagnetic induction ; Engineering Sciences ; Fiber reinforced polymers ; induction thermography ; Magnetism ; Mathematical models ; Numerical models ; Physical properties ; Resistance ; Temperature measurement ; Tensile stress ; Thermal analysis ; Thermography</subject><ispartof>IEEE transactions on magnetics, 2018-03, Vol.54 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2f63cc23980d94f90a6072242958e8a78cb181352ca753322fd9dd0addf9b0443</citedby><cites>FETCH-LOGICAL-c393t-2f63cc23980d94f90a6072242958e8a78cb181352ca753322fd9dd0addf9b0443</cites><orcidid>0000-0002-0480-7464 ; 0000-0002-3154-5500 ; 0000-0001-6956-9236 ; 0000-0001-8763-8696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8013804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8013804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04074854$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, H. K.</creatorcontrib><creatorcontrib>Senghor, F. D.</creatorcontrib><creatorcontrib>Wasselynck, G.</creatorcontrib><creatorcontrib>Trichet, D.</creatorcontrib><creatorcontrib>Fouladgar, J.</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Berthiau, G.</creatorcontrib><title>Characterization of Electrical Conductivity of Anisotropic CFRP Materials by Means of Induction Thermography Technique</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description><![CDATA[Numerical simulations by means of finite elements are used to investigate the capacities of the induction thermography technique for the characterization of electrical conductivities of unidirectional carbon fiber reinforced polymer (CFRP) materials. A coupled electromagnetic-thermal model is presented using hexahedral elements to deal with the thin region of fully anisotropic physical properties. Eddy-current problem is solved using the <inline-formula> <tex-math notation="LaTeX"> {{T}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> formulation to deduce heat source density power. Transient thermal problem is solved with a fixed time step. An error minimization-based method is presented to identify the electrical resistivity of unidirectional CFRP from the induction thermography measurement.]]></description><subject>Anisotropic magnetoresistance</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforced polymer (CFRP)</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>coupled model</subject><subject>Eddy current testing</subject><subject>Eddy currents</subject><subject>electrical conductivity characterization</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electromagnetic induction</subject><subject>Engineering Sciences</subject><subject>Fiber reinforced polymers</subject><subject>induction thermography</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Physical properties</subject><subject>Resistance</subject><subject>Temperature measurement</subject><subject>Tensile stress</subject><subject>Thermal analysis</subject><subject>Thermography</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kVtLwzAYhoMoOKc_QLwpeOVF55dD1-RylJ1gQ5F5HbI0tRlbM9NuUH-9KR27Ckme580XXoSeMYwwBvG-WU_mIwI4HZGUEZGKGzTAguEYYCxu0QAA81iwMbtHD3W9C1uWYBigc1Yqr3RjvP1TjXVV5Ipouje68VarfZS5Kj_pxp5t03ZXk8rWrvHuaHWUzb4-o7XqXLWvo20brY2q6g5b9laI25TGH9yPV8eyjTZGl5X9PZlHdFcExzxd1iH6nk032SJefcyX2WQVaypoE5NiTLUmVHDIBSsEqDGkhIQPJtxwlXK9xRzThGiVJpQSUuQiz0HleSG2wBgdorc-t1R7efT2oHwrnbJyMVnJ7gwYpIwn7IwD-9qzR-_CiHUjd-7kqzCeJBCeBZFyESjcU9q7uvamuMZikF0VsqtCdlXISxXBeekda4y58hww5cDoP7JhhNo</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bui, H. K.</creator><creator>Senghor, F. D.</creator><creator>Wasselynck, G.</creator><creator>Trichet, D.</creator><creator>Fouladgar, J.</creator><creator>Lee, K.</creator><creator>Berthiau, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0480-7464</orcidid><orcidid>https://orcid.org/0000-0002-3154-5500</orcidid><orcidid>https://orcid.org/0000-0001-6956-9236</orcidid><orcidid>https://orcid.org/0000-0001-8763-8696</orcidid></search><sort><creationdate>20180301</creationdate><title>Characterization of Electrical Conductivity of Anisotropic CFRP Materials by Means of Induction Thermography Technique</title><author>Bui, H. K. ; Senghor, F. D. ; Wasselynck, G. ; Trichet, D. ; Fouladgar, J. ; Lee, K. ; Berthiau, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2f63cc23980d94f90a6072242958e8a78cb181352ca753322fd9dd0addf9b0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforced polymer (CFRP)</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>coupled model</topic><topic>Eddy current testing</topic><topic>Eddy currents</topic><topic>electrical conductivity characterization</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electromagnetic induction</topic><topic>Engineering Sciences</topic><topic>Fiber reinforced polymers</topic><topic>induction thermography</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Physical properties</topic><topic>Resistance</topic><topic>Temperature measurement</topic><topic>Tensile stress</topic><topic>Thermal analysis</topic><topic>Thermography</topic><toplevel>online_resources</toplevel><creatorcontrib>Bui, H. K.</creatorcontrib><creatorcontrib>Senghor, F. D.</creatorcontrib><creatorcontrib>Wasselynck, G.</creatorcontrib><creatorcontrib>Trichet, D.</creatorcontrib><creatorcontrib>Fouladgar, J.</creatorcontrib><creatorcontrib>Lee, K.</creatorcontrib><creatorcontrib>Berthiau, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bui, H. K.</au><au>Senghor, F. D.</au><au>Wasselynck, G.</au><au>Trichet, D.</au><au>Fouladgar, J.</au><au>Lee, K.</au><au>Berthiau, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Electrical Conductivity of Anisotropic CFRP Materials by Means of Induction Thermography Technique</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>54</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract><![CDATA[Numerical simulations by means of finite elements are used to investigate the capacities of the induction thermography technique for the characterization of electrical conductivities of unidirectional carbon fiber reinforced polymer (CFRP) materials. A coupled electromagnetic-thermal model is presented using hexahedral elements to deal with the thin region of fully anisotropic physical properties. Eddy-current problem is solved using the <inline-formula> <tex-math notation="LaTeX"> {{T}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> formulation to deduce heat source density power. Transient thermal problem is solved with a fixed time step. An error minimization-based method is presented to identify the electrical resistivity of unidirectional CFRP from the induction thermography measurement.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2742979</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0480-7464</orcidid><orcidid>https://orcid.org/0000-0002-3154-5500</orcidid><orcidid>https://orcid.org/0000-0001-6956-9236</orcidid><orcidid>https://orcid.org/0000-0001-8763-8696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2018-03, Vol.54 (3), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2017_2742979 |
source | IEEE Electronic Library (IEL) |
subjects | Anisotropic magnetoresistance Carbon Carbon fiber reinforced plastics Carbon fiber reinforced polymer (CFRP) Computer simulation Conductivity coupled model Eddy current testing Eddy currents electrical conductivity characterization Electrical properties Electrical resistivity Electromagnetic induction Engineering Sciences Fiber reinforced polymers induction thermography Magnetism Mathematical models Numerical models Physical properties Resistance Temperature measurement Tensile stress Thermal analysis Thermography |
title | Characterization of Electrical Conductivity of Anisotropic CFRP Materials by Means of Induction Thermography Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Electrical%20Conductivity%20of%20Anisotropic%20CFRP%20Materials%20by%20Means%20of%20Induction%20Thermography%20Technique&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Bui,%20H.%20K.&rft.date=2018-03-01&rft.volume=54&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2742979&rft_dat=%3Cproquest_RIE%3E2007209789%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007209789&rft_id=info:pmid/&rft_ieee_id=8013804&rfr_iscdi=true |