Accurate Treatment of Nonconformal Material Interfaces in the Finite Integration Technique

We discuss a generalized strategy to model material interfaces in the finite integration technique (FIT) on Cartesian meshes. It originates from the exact formula for the ratio of grid fluxes and grid voltages, which requires a priori knowledge of the local fields. For axis-parallel material interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2016-03, Vol.52 (3), p.1-4
Hauptverfasser: Kirsch, Stefan, Kuen, Lilli, Schuhmann, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 52
creator Kirsch, Stefan
Kuen, Lilli
Schuhmann, Rolf
description We discuss a generalized strategy to model material interfaces in the finite integration technique (FIT) on Cartesian meshes. It originates from the exact formula for the ratio of grid fluxes and grid voltages, which requires a priori knowledge of the local fields. For axis-parallel material interfaces, this field information is canceled out, yielding the standard expressions of the FIT's material operators. For nonconformal interfaces, two concepts are discussed to obtain feasible implementations. Applied to an exemplary quasistatic example, the generalized formula shows superior accuracy compared with staircase approximations.
doi_str_mv 10.1109/TMAG.2015.2474138
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2015_2474138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7229316</ieee_id><sourcerecordid>4047594031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-14cb5c2617752bbf3002a3b4621803323587c797b43a5d03ad20699348f5528a3</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujiYj-AONlEy9eFjv92HaPhAiSgF7Wi5emW7pSAi22y8F_bwnEg6eZyTzvfLwI3QMeAeD6uVmOZyOCgY8IEwyovEADqBmUGFf1JRpgDLKsWcWu0U1Km1wyDniAPsfGHKLubdFEq_ud9X0RuuIteBN8F-JOb4tlbkeXk7nPSaeNTYXzRb-2xdR5l7XHxlee4oIvGmvW3n0f7C266vQ22btzHKKP6UszeS0X77P5ZLwoDSVVXwIzLTekAiE4aduOYkw0bVlFQGJKCeVSGFGLllHNV5jqFckv1ZTJjnMiNR2ip9PcfQx5berVziVjt1vtbTgkBRIqLKmgOKOP_9BNOESfr1MgpCCUVcAzBSfKxJBStJ3aR7fT8UcBVke31dFtdXRbnd3OmoeTxllr_3hBSE2hor_v-3lR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787234615</pqid></control><display><type>article</type><title>Accurate Treatment of Nonconformal Material Interfaces in the Finite Integration Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Kirsch, Stefan ; Kuen, Lilli ; Schuhmann, Rolf</creator><creatorcontrib>Kirsch, Stefan ; Kuen, Lilli ; Schuhmann, Rolf</creatorcontrib><description>We discuss a generalized strategy to model material interfaces in the finite integration technique (FIT) on Cartesian meshes. It originates from the exact formula for the ratio of grid fluxes and grid voltages, which requires a priori knowledge of the local fields. For axis-parallel material interfaces, this field information is canceled out, yielding the standard expressions of the FIT's material operators. For nonconformal interfaces, two concepts are discussed to obtain feasible implementations. Applied to an exemplary quasistatic example, the generalized formula shows superior accuracy compared with staircase approximations.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2474138</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Approximation ; Approximation methods ; Computational modeling ; Convergence of Numerical Methods ; Electric potential ; Finite difference methods ; Finite Integration Technique ; Fluxes ; Magnetism ; Material Discretization ; Mathematical analysis ; Mathematical models ; Permeability ; Strategy ; Time-domain analysis ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2016-03, Vol.52 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-14cb5c2617752bbf3002a3b4621803323587c797b43a5d03ad20699348f5528a3</citedby><cites>FETCH-LOGICAL-c326t-14cb5c2617752bbf3002a3b4621803323587c797b43a5d03ad20699348f5528a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7229316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7229316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kirsch, Stefan</creatorcontrib><creatorcontrib>Kuen, Lilli</creatorcontrib><creatorcontrib>Schuhmann, Rolf</creatorcontrib><title>Accurate Treatment of Nonconformal Material Interfaces in the Finite Integration Technique</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We discuss a generalized strategy to model material interfaces in the finite integration technique (FIT) on Cartesian meshes. It originates from the exact formula for the ratio of grid fluxes and grid voltages, which requires a priori knowledge of the local fields. For axis-parallel material interfaces, this field information is canceled out, yielding the standard expressions of the FIT's material operators. For nonconformal interfaces, two concepts are discussed to obtain feasible implementations. Applied to an exemplary quasistatic example, the generalized formula shows superior accuracy compared with staircase approximations.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Convergence of Numerical Methods</subject><subject>Electric potential</subject><subject>Finite difference methods</subject><subject>Finite Integration Technique</subject><subject>Fluxes</subject><subject>Magnetism</subject><subject>Material Discretization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Permeability</subject><subject>Strategy</subject><subject>Time-domain analysis</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PAjEQhhujiYj-AONlEy9eFjv92HaPhAiSgF7Wi5emW7pSAi22y8F_bwnEg6eZyTzvfLwI3QMeAeD6uVmOZyOCgY8IEwyovEADqBmUGFf1JRpgDLKsWcWu0U1Km1wyDniAPsfGHKLubdFEq_ud9X0RuuIteBN8F-JOb4tlbkeXk7nPSaeNTYXzRb-2xdR5l7XHxlee4oIvGmvW3n0f7C266vQ22btzHKKP6UszeS0X77P5ZLwoDSVVXwIzLTekAiE4aduOYkw0bVlFQGJKCeVSGFGLllHNV5jqFckv1ZTJjnMiNR2ip9PcfQx5berVziVjt1vtbTgkBRIqLKmgOKOP_9BNOESfr1MgpCCUVcAzBSfKxJBStJ3aR7fT8UcBVke31dFtdXRbnd3OmoeTxllr_3hBSE2hor_v-3lR</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kirsch, Stefan</creator><creator>Kuen, Lilli</creator><creator>Schuhmann, Rolf</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201603</creationdate><title>Accurate Treatment of Nonconformal Material Interfaces in the Finite Integration Technique</title><author>Kirsch, Stefan ; Kuen, Lilli ; Schuhmann, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-14cb5c2617752bbf3002a3b4621803323587c797b43a5d03ad20699348f5528a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Convergence of Numerical Methods</topic><topic>Electric potential</topic><topic>Finite difference methods</topic><topic>Finite Integration Technique</topic><topic>Fluxes</topic><topic>Magnetism</topic><topic>Material Discretization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Permeability</topic><topic>Strategy</topic><topic>Time-domain analysis</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Kirsch, Stefan</creatorcontrib><creatorcontrib>Kuen, Lilli</creatorcontrib><creatorcontrib>Schuhmann, Rolf</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kirsch, Stefan</au><au>Kuen, Lilli</au><au>Schuhmann, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Treatment of Nonconformal Material Interfaces in the Finite Integration Technique</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2016-03</date><risdate>2016</risdate><volume>52</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We discuss a generalized strategy to model material interfaces in the finite integration technique (FIT) on Cartesian meshes. It originates from the exact formula for the ratio of grid fluxes and grid voltages, which requires a priori knowledge of the local fields. For axis-parallel material interfaces, this field information is canceled out, yielding the standard expressions of the FIT's material operators. For nonconformal interfaces, two concepts are discussed to obtain feasible implementations. Applied to an exemplary quasistatic example, the generalized formula shows superior accuracy compared with staircase approximations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2015.2474138</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2016-03, Vol.52 (3), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2015_2474138
source IEEE Electronic Library (IEL)
subjects Accuracy
Approximation
Approximation methods
Computational modeling
Convergence of Numerical Methods
Electric potential
Finite difference methods
Finite Integration Technique
Fluxes
Magnetism
Material Discretization
Mathematical analysis
Mathematical models
Permeability
Strategy
Time-domain analysis
Voltage
title Accurate Treatment of Nonconformal Material Interfaces in the Finite Integration Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Treatment%20of%20Nonconformal%20Material%20Interfaces%20in%20the%20Finite%20Integration%20Technique&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kirsch,%20Stefan&rft.date=2016-03&rft.volume=52&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2474138&rft_dat=%3Cproquest_RIE%3E4047594031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787234615&rft_id=info:pmid/&rft_ieee_id=7229316&rfr_iscdi=true