Modeling Deformations in Magnetic Systems-A Finite-Element Implementation
We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2015-12, Vol.51 (12), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 51 |
creator | Kovanen, Tuomas Tarhasaari, Timo Kettunen, Lauri |
description | We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations. |
doi_str_mv | 10.1109/TMAG.2015.2453140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2015_2453140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7177098</ieee_id><sourcerecordid>3883509301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</originalsourceid><addsrcrecordid>eNo9kEFPwjAUxxujiYh-AONliedhX9t17ZEg4BKIB_HcdOOVlLAN23Hg2zsc8fTeP_n930t-hDwDnQBQ_bZZT5cTRiGbMJFxEPSGjEALSCmV-paMKAWVaiHFPXmIcd9HkQEdkWLdbvHgm13yjq4Nte1828TEN8na7hrsfJV8nWOHdUynycI3vsN0fsAamy4p6uOw_ZUeyZ2zh4hP1zkm34v5ZvaRrj6XxWy6SiumeZeW4KyQmdCsBOaU45VELpwqbSn5FpkSspJVn5iwPC8tVyorNeTOUZRKKj4mr8PdY2h_Thg7s29PoelfGsh7mgkA6CkYqCq0MQZ05hh8bcPZADUXY-ZizFyMmauxvvMydDwi_vM55DnViv8C4Z9nIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738824111</pqid></control><display><type>article</type><title>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Kovanen, Tuomas ; Tarhasaari, Timo ; Kettunen, Lauri</creator><creatorcontrib>Kovanen, Tuomas ; Tarhasaari, Timo ; Kettunen, Lauri</creatorcontrib><description>We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2453140</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>differential forms ; Finite element analysis ; finite element method ; Geometry ; Magnetic fields ; Magnetic forces ; Magnetism ; magneto-mechanical coupling ; Magnetoelasticity ; manifolds ; Mathematical model ; Measurement ; Tensile stress</subject><ispartof>IEEE transactions on magnetics, 2015-12, Vol.51 (12), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</citedby><cites>FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7177098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7177098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kovanen, Tuomas</creatorcontrib><creatorcontrib>Tarhasaari, Timo</creatorcontrib><creatorcontrib>Kettunen, Lauri</creatorcontrib><title>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.</description><subject>differential forms</subject><subject>Finite element analysis</subject><subject>finite element method</subject><subject>Geometry</subject><subject>Magnetic fields</subject><subject>Magnetic forces</subject><subject>Magnetism</subject><subject>magneto-mechanical coupling</subject><subject>Magnetoelasticity</subject><subject>manifolds</subject><subject>Mathematical model</subject><subject>Measurement</subject><subject>Tensile stress</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwjAUxxujiYh-AONliedhX9t17ZEg4BKIB_HcdOOVlLAN23Hg2zsc8fTeP_n930t-hDwDnQBQ_bZZT5cTRiGbMJFxEPSGjEALSCmV-paMKAWVaiHFPXmIcd9HkQEdkWLdbvHgm13yjq4Nte1828TEN8na7hrsfJV8nWOHdUynycI3vsN0fsAamy4p6uOw_ZUeyZ2zh4hP1zkm34v5ZvaRrj6XxWy6SiumeZeW4KyQmdCsBOaU45VELpwqbSn5FpkSspJVn5iwPC8tVyorNeTOUZRKKj4mr8PdY2h_Thg7s29PoelfGsh7mgkA6CkYqCq0MQZ05hh8bcPZADUXY-ZizFyMmauxvvMydDwi_vM55DnViv8C4Z9nIA</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Kovanen, Tuomas</creator><creator>Tarhasaari, Timo</creator><creator>Kettunen, Lauri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</title><author>Kovanen, Tuomas ; Tarhasaari, Timo ; Kettunen, Lauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>differential forms</topic><topic>Finite element analysis</topic><topic>finite element method</topic><topic>Geometry</topic><topic>Magnetic fields</topic><topic>Magnetic forces</topic><topic>Magnetism</topic><topic>magneto-mechanical coupling</topic><topic>Magnetoelasticity</topic><topic>manifolds</topic><topic>Mathematical model</topic><topic>Measurement</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovanen, Tuomas</creatorcontrib><creatorcontrib>Tarhasaari, Timo</creatorcontrib><creatorcontrib>Kettunen, Lauri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kovanen, Tuomas</au><au>Tarhasaari, Timo</au><au>Kettunen, Lauri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2015-12</date><risdate>2015</risdate><volume>51</volume><issue>12</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2015.2453140</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2015-12, Vol.51 (12), p.1-9 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2015_2453140 |
source | IEEE Electronic Library (IEL) |
subjects | differential forms Finite element analysis finite element method Geometry Magnetic fields Magnetic forces Magnetism magneto-mechanical coupling Magnetoelasticity manifolds Mathematical model Measurement Tensile stress |
title | Modeling Deformations in Magnetic Systems-A Finite-Element Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Deformations%20in%20Magnetic%20Systems-A%20Finite-Element%20Implementation&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kovanen,%20Tuomas&rft.date=2015-12&rft.volume=51&rft.issue=12&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2453140&rft_dat=%3Cproquest_RIE%3E3883509301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738824111&rft_id=info:pmid/&rft_ieee_id=7177098&rfr_iscdi=true |