Modeling Deformations in Magnetic Systems-A Finite-Element Implementation

We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2015-12, Vol.51 (12), p.1-9
Hauptverfasser: Kovanen, Tuomas, Tarhasaari, Timo, Kettunen, Lauri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 12
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 51
creator Kovanen, Tuomas
Tarhasaari, Timo
Kettunen, Lauri
description We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.
doi_str_mv 10.1109/TMAG.2015.2453140
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2015_2453140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7177098</ieee_id><sourcerecordid>3883509301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</originalsourceid><addsrcrecordid>eNo9kEFPwjAUxxujiYh-AONliedhX9t17ZEg4BKIB_HcdOOVlLAN23Hg2zsc8fTeP_n930t-hDwDnQBQ_bZZT5cTRiGbMJFxEPSGjEALSCmV-paMKAWVaiHFPXmIcd9HkQEdkWLdbvHgm13yjq4Nte1828TEN8na7hrsfJV8nWOHdUynycI3vsN0fsAamy4p6uOw_ZUeyZ2zh4hP1zkm34v5ZvaRrj6XxWy6SiumeZeW4KyQmdCsBOaU45VELpwqbSn5FpkSspJVn5iwPC8tVyorNeTOUZRKKj4mr8PdY2h_Thg7s29PoelfGsh7mgkA6CkYqCq0MQZ05hh8bcPZADUXY-ZizFyMmauxvvMydDwi_vM55DnViv8C4Z9nIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738824111</pqid></control><display><type>article</type><title>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Kovanen, Tuomas ; Tarhasaari, Timo ; Kettunen, Lauri</creator><creatorcontrib>Kovanen, Tuomas ; Tarhasaari, Timo ; Kettunen, Lauri</creatorcontrib><description>We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2453140</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>differential forms ; Finite element analysis ; finite element method ; Geometry ; Magnetic fields ; Magnetic forces ; Magnetism ; magneto-mechanical coupling ; Magnetoelasticity ; manifolds ; Mathematical model ; Measurement ; Tensile stress</subject><ispartof>IEEE transactions on magnetics, 2015-12, Vol.51 (12), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</citedby><cites>FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7177098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7177098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kovanen, Tuomas</creatorcontrib><creatorcontrib>Tarhasaari, Timo</creatorcontrib><creatorcontrib>Kettunen, Lauri</creatorcontrib><title>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.</description><subject>differential forms</subject><subject>Finite element analysis</subject><subject>finite element method</subject><subject>Geometry</subject><subject>Magnetic fields</subject><subject>Magnetic forces</subject><subject>Magnetism</subject><subject>magneto-mechanical coupling</subject><subject>Magnetoelasticity</subject><subject>manifolds</subject><subject>Mathematical model</subject><subject>Measurement</subject><subject>Tensile stress</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwjAUxxujiYh-AONliedhX9t17ZEg4BKIB_HcdOOVlLAN23Hg2zsc8fTeP_n930t-hDwDnQBQ_bZZT5cTRiGbMJFxEPSGjEALSCmV-paMKAWVaiHFPXmIcd9HkQEdkWLdbvHgm13yjq4Nte1828TEN8na7hrsfJV8nWOHdUynycI3vsN0fsAamy4p6uOw_ZUeyZ2zh4hP1zkm34v5ZvaRrj6XxWy6SiumeZeW4KyQmdCsBOaU45VELpwqbSn5FpkSspJVn5iwPC8tVyorNeTOUZRKKj4mr8PdY2h_Thg7s29PoelfGsh7mgkA6CkYqCq0MQZ05hh8bcPZADUXY-ZizFyMmauxvvMydDwi_vM55DnViv8C4Z9nIA</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Kovanen, Tuomas</creator><creator>Tarhasaari, Timo</creator><creator>Kettunen, Lauri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</title><author>Kovanen, Tuomas ; Tarhasaari, Timo ; Kettunen, Lauri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b1fa465492b12f8f3c6e34f8bab63de2846c6cbab24a37ba3885b917ff0e68683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>differential forms</topic><topic>Finite element analysis</topic><topic>finite element method</topic><topic>Geometry</topic><topic>Magnetic fields</topic><topic>Magnetic forces</topic><topic>Magnetism</topic><topic>magneto-mechanical coupling</topic><topic>Magnetoelasticity</topic><topic>manifolds</topic><topic>Mathematical model</topic><topic>Measurement</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovanen, Tuomas</creatorcontrib><creatorcontrib>Tarhasaari, Timo</creatorcontrib><creatorcontrib>Kettunen, Lauri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kovanen, Tuomas</au><au>Tarhasaari, Timo</au><au>Kettunen, Lauri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Deformations in Magnetic Systems-A Finite-Element Implementation</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2015-12</date><risdate>2015</risdate><volume>51</volume><issue>12</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We consider a magnetomechanical model, where the effect of deformation on magnetic field is considered. In the given method, the equilibrium magnetic field is represented and solved in the undeformed reference configuration-a procedure that requires the deformation map to be determined not only in material bodies but also in their surroundings. We use linear elasticity to determine the deformation in material bodies, whereas the extension of deformation to the surroundings of material bodies is performed according to the Laplace equation. The use of the Laplace equation for the extension leads to the improved convergence behavior of the coupled model in comparison with a model, which is widely employed in the literature. Another aspect of the given model is its coordinate system invariance, allowing arbitrary coordinates to be used for magnetomechanical computations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2015.2453140</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2015-12, Vol.51 (12), p.1-9
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2015_2453140
source IEEE Electronic Library (IEL)
subjects differential forms
Finite element analysis
finite element method
Geometry
Magnetic fields
Magnetic forces
Magnetism
magneto-mechanical coupling
Magnetoelasticity
manifolds
Mathematical model
Measurement
Tensile stress
title Modeling Deformations in Magnetic Systems-A Finite-Element Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Deformations%20in%20Magnetic%20Systems-A%20Finite-Element%20Implementation&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kovanen,%20Tuomas&rft.date=2015-12&rft.volume=51&rft.issue=12&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2453140&rft_dat=%3Cproquest_RIE%3E3883509301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738824111&rft_id=info:pmid/&rft_ieee_id=7177098&rfr_iscdi=true