High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges
Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2015-11, Vol.51 (11), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 51 |
creator | Ganping Ju Yingguo Peng Chang, Eric K. C. Yinfeng Ding Wu, Alexander Q. Xiaobin Zhu Kubota, Yukiko Klemmer, Timothy J. Amini, Hassib Li Gao Zhaohui Fan Rausch, Tim Subedi, Pradeep Minjie Ma Kalarickal, Sangita Rea, Chris J. Dimitrov, Dimitar V. Pin-Wei Huang Kangkang Wang Xi Chen Chubing Peng Weibin Chen Dykes, John W. Seigler, Mike A. Gage, Edward C. Chantrell, Roy Thiele, Jan-Ulrich |
description | Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (>2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 . |
doi_str_mv | 10.1109/TMAG.2015.2439690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2015_2439690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7115916</ieee_id><sourcerecordid>1778046380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVHyBeAl68pM4m-5E9lqqt0KJIPYfNZpJuSTd1NxXqrze14sHTMMwzw_ASck1hRCmo--ViPB0lQPkoYakSCk7IgCpGYwChTskAgGaxYoKdk4sQ1n3LOIUBsTNbr6IHdMF2-2iGuovHIdjQYRktdO2wsyZ6Q9P60ro6WmBpdaRdGY3LT-1MryYr7bXp0Nsv3dnWxa--rT2G8MP6adOgqzFckrNKNwGvfuuQvD89LiezeP4yfZ6M57FhDLrYFEXCM5VAUagUlEJRJgJVIVnGCy4yxhJpGGQVq9KCGSHBpFIKFAkKIalOh-TueHfr248dhi7f2GCwabTDdhdyKmUGTKQZ9PT2H123O-_673qVqFRxzlWv6FEZ34bgscq33m603-cU8kP4-SH8_BB-_ht-v3Nz3LGI-OclpVxRkX4DhwJ_OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729395559</pqid></control><display><type>article</type><title>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ganping Ju ; Yingguo Peng ; Chang, Eric K. C. ; Yinfeng Ding ; Wu, Alexander Q. ; Xiaobin Zhu ; Kubota, Yukiko ; Klemmer, Timothy J. ; Amini, Hassib ; Li Gao ; Zhaohui Fan ; Rausch, Tim ; Subedi, Pradeep ; Minjie Ma ; Kalarickal, Sangita ; Rea, Chris J. ; Dimitrov, Dimitar V. ; Pin-Wei Huang ; Kangkang Wang ; Xi Chen ; Chubing Peng ; Weibin Chen ; Dykes, John W. ; Seigler, Mike A. ; Gage, Edward C. ; Chantrell, Roy ; Thiele, Jan-Ulrich</creator><creatorcontrib>Ganping Ju ; Yingguo Peng ; Chang, Eric K. C. ; Yinfeng Ding ; Wu, Alexander Q. ; Xiaobin Zhu ; Kubota, Yukiko ; Klemmer, Timothy J. ; Amini, Hassib ; Li Gao ; Zhaohui Fan ; Rausch, Tim ; Subedi, Pradeep ; Minjie Ma ; Kalarickal, Sangita ; Rea, Chris J. ; Dimitrov, Dimitar V. ; Pin-Wei Huang ; Kangkang Wang ; Xi Chen ; Chubing Peng ; Weibin Chen ; Dykes, John W. ; Seigler, Mike A. ; Gage, Edward C. ; Chantrell, Roy ; Thiele, Jan-Ulrich</creatorcontrib><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (>2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2439690</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropy ; BTD demo ; Density ; FePtX media ; HAMR (Heat assisted magnetic recording) ; Heat-assisted magnetic recording ; Jitter ; Magnetic heads ; Magnetic recording ; Magnetic tape ; Magnetism ; Media ; media microstructure ; Microstructure ; NFT (Near field transducer) ; TC distributions ; Temperature distribution ; Temperature measurement ; Thermal conductivity ; Thermal design ; Transducers</subject><ispartof>IEEE transactions on magnetics, 2015-11, Vol.51 (11), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</citedby><cites>FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7115916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7115916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ganping Ju</creatorcontrib><creatorcontrib>Yingguo Peng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Yinfeng Ding</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Li Gao</creatorcontrib><creatorcontrib>Zhaohui Fan</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Subedi, Pradeep</creatorcontrib><creatorcontrib>Minjie Ma</creatorcontrib><creatorcontrib>Kalarickal, Sangita</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Dimitrov, Dimitar V.</creatorcontrib><creatorcontrib>Pin-Wei Huang</creatorcontrib><creatorcontrib>Kangkang Wang</creatorcontrib><creatorcontrib>Xi Chen</creatorcontrib><creatorcontrib>Chubing Peng</creatorcontrib><creatorcontrib>Weibin Chen</creatorcontrib><creatorcontrib>Dykes, John W.</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Gage, Edward C.</creatorcontrib><creatorcontrib>Chantrell, Roy</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><title>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (>2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .</description><subject>Anisotropy</subject><subject>BTD demo</subject><subject>Density</subject><subject>FePtX media</subject><subject>HAMR (Heat assisted magnetic recording)</subject><subject>Heat-assisted magnetic recording</subject><subject>Jitter</subject><subject>Magnetic heads</subject><subject>Magnetic recording</subject><subject>Magnetic tape</subject><subject>Magnetism</subject><subject>Media</subject><subject>media microstructure</subject><subject>Microstructure</subject><subject>NFT (Near field transducer)</subject><subject>TC distributions</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal design</subject><subject>Transducers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1Lw0AQBuBFFKzVHyBeAl68pM4m-5E9lqqt0KJIPYfNZpJuSTd1NxXqrze14sHTMMwzw_ASck1hRCmo--ViPB0lQPkoYakSCk7IgCpGYwChTskAgGaxYoKdk4sQ1n3LOIUBsTNbr6IHdMF2-2iGuovHIdjQYRktdO2wsyZ6Q9P60ro6WmBpdaRdGY3LT-1MryYr7bXp0Nsv3dnWxa--rT2G8MP6adOgqzFckrNKNwGvfuuQvD89LiezeP4yfZ6M57FhDLrYFEXCM5VAUagUlEJRJgJVIVnGCy4yxhJpGGQVq9KCGSHBpFIKFAkKIalOh-TueHfr248dhi7f2GCwabTDdhdyKmUGTKQZ9PT2H123O-_673qVqFRxzlWv6FEZ34bgscq33m603-cU8kP4-SH8_BB-_ht-v3Nz3LGI-OclpVxRkX4DhwJ_OA</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Ganping Ju</creator><creator>Yingguo Peng</creator><creator>Chang, Eric K. C.</creator><creator>Yinfeng Ding</creator><creator>Wu, Alexander Q.</creator><creator>Xiaobin Zhu</creator><creator>Kubota, Yukiko</creator><creator>Klemmer, Timothy J.</creator><creator>Amini, Hassib</creator><creator>Li Gao</creator><creator>Zhaohui Fan</creator><creator>Rausch, Tim</creator><creator>Subedi, Pradeep</creator><creator>Minjie Ma</creator><creator>Kalarickal, Sangita</creator><creator>Rea, Chris J.</creator><creator>Dimitrov, Dimitar V.</creator><creator>Pin-Wei Huang</creator><creator>Kangkang Wang</creator><creator>Xi Chen</creator><creator>Chubing Peng</creator><creator>Weibin Chen</creator><creator>Dykes, John W.</creator><creator>Seigler, Mike A.</creator><creator>Gage, Edward C.</creator><creator>Chantrell, Roy</creator><creator>Thiele, Jan-Ulrich</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</title><author>Ganping Ju ; Yingguo Peng ; Chang, Eric K. C. ; Yinfeng Ding ; Wu, Alexander Q. ; Xiaobin Zhu ; Kubota, Yukiko ; Klemmer, Timothy J. ; Amini, Hassib ; Li Gao ; Zhaohui Fan ; Rausch, Tim ; Subedi, Pradeep ; Minjie Ma ; Kalarickal, Sangita ; Rea, Chris J. ; Dimitrov, Dimitar V. ; Pin-Wei Huang ; Kangkang Wang ; Xi Chen ; Chubing Peng ; Weibin Chen ; Dykes, John W. ; Seigler, Mike A. ; Gage, Edward C. ; Chantrell, Roy ; Thiele, Jan-Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropy</topic><topic>BTD demo</topic><topic>Density</topic><topic>FePtX media</topic><topic>HAMR (Heat assisted magnetic recording)</topic><topic>Heat-assisted magnetic recording</topic><topic>Jitter</topic><topic>Magnetic heads</topic><topic>Magnetic recording</topic><topic>Magnetic tape</topic><topic>Magnetism</topic><topic>Media</topic><topic>media microstructure</topic><topic>Microstructure</topic><topic>NFT (Near field transducer)</topic><topic>TC distributions</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal design</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganping Ju</creatorcontrib><creatorcontrib>Yingguo Peng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Yinfeng Ding</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Li Gao</creatorcontrib><creatorcontrib>Zhaohui Fan</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Subedi, Pradeep</creatorcontrib><creatorcontrib>Minjie Ma</creatorcontrib><creatorcontrib>Kalarickal, Sangita</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Dimitrov, Dimitar V.</creatorcontrib><creatorcontrib>Pin-Wei Huang</creatorcontrib><creatorcontrib>Kangkang Wang</creatorcontrib><creatorcontrib>Xi Chen</creatorcontrib><creatorcontrib>Chubing Peng</creatorcontrib><creatorcontrib>Weibin Chen</creatorcontrib><creatorcontrib>Dykes, John W.</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Gage, Edward C.</creatorcontrib><creatorcontrib>Chantrell, Roy</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganping Ju</au><au>Yingguo Peng</au><au>Chang, Eric K. C.</au><au>Yinfeng Ding</au><au>Wu, Alexander Q.</au><au>Xiaobin Zhu</au><au>Kubota, Yukiko</au><au>Klemmer, Timothy J.</au><au>Amini, Hassib</au><au>Li Gao</au><au>Zhaohui Fan</au><au>Rausch, Tim</au><au>Subedi, Pradeep</au><au>Minjie Ma</au><au>Kalarickal, Sangita</au><au>Rea, Chris J.</au><au>Dimitrov, Dimitar V.</au><au>Pin-Wei Huang</au><au>Kangkang Wang</au><au>Xi Chen</au><au>Chubing Peng</au><au>Weibin Chen</au><au>Dykes, John W.</au><au>Seigler, Mike A.</au><au>Gage, Edward C.</au><au>Chantrell, Roy</au><au>Thiele, Jan-Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2015-11</date><risdate>2015</risdate><volume>51</volume><issue>11</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (>2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2015.2439690</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2015-11, Vol.51 (11), p.1-9 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2015_2439690 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Anisotropy BTD demo Density FePtX media HAMR (Heat assisted magnetic recording) Heat-assisted magnetic recording Jitter Magnetic heads Magnetic recording Magnetic tape Magnetism Media media microstructure Microstructure NFT (Near field transducer) TC distributions Temperature distribution Temperature measurement Thermal conductivity Thermal design Transducers |
title | High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Density%20Heat-Assisted%20Magnetic%20Recording%20Media%20and%20Advanced%20Characterization-Progress%20and%20Challenges&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ganping%20Ju&rft.date=2015-11&rft.volume=51&rft.issue=11&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2439690&rft_dat=%3Cproquest_RIE%3E1778046380%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729395559&rft_id=info:pmid/&rft_ieee_id=7115916&rfr_iscdi=true |