High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges

Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2015-11, Vol.51 (11), p.1-9
Hauptverfasser: Ganping Ju, Yingguo Peng, Chang, Eric K. C., Yinfeng Ding, Wu, Alexander Q., Xiaobin Zhu, Kubota, Yukiko, Klemmer, Timothy J., Amini, Hassib, Li Gao, Zhaohui Fan, Rausch, Tim, Subedi, Pradeep, Minjie Ma, Kalarickal, Sangita, Rea, Chris J., Dimitrov, Dimitar V., Pin-Wei Huang, Kangkang Wang, Xi Chen, Chubing Peng, Weibin Chen, Dykes, John W., Seigler, Mike A., Gage, Edward C., Chantrell, Roy, Thiele, Jan-Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 51
creator Ganping Ju
Yingguo Peng
Chang, Eric K. C.
Yinfeng Ding
Wu, Alexander Q.
Xiaobin Zhu
Kubota, Yukiko
Klemmer, Timothy J.
Amini, Hassib
Li Gao
Zhaohui Fan
Rausch, Tim
Subedi, Pradeep
Minjie Ma
Kalarickal, Sangita
Rea, Chris J.
Dimitrov, Dimitar V.
Pin-Wei Huang
Kangkang Wang
Xi Chen
Chubing Peng
Weibin Chen
Dykes, John W.
Seigler, Mike A.
Gage, Edward C.
Chantrell, Roy
Thiele, Jan-Ulrich
description Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (>2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .
doi_str_mv 10.1109/TMAG.2015.2439690
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2015_2439690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7115916</ieee_id><sourcerecordid>1778046380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVHyBeAl68pM4m-5E9lqqt0KJIPYfNZpJuSTd1NxXqrze14sHTMMwzw_ASck1hRCmo--ViPB0lQPkoYakSCk7IgCpGYwChTskAgGaxYoKdk4sQ1n3LOIUBsTNbr6IHdMF2-2iGuovHIdjQYRktdO2wsyZ6Q9P60ro6WmBpdaRdGY3LT-1MryYr7bXp0Nsv3dnWxa--rT2G8MP6adOgqzFckrNKNwGvfuuQvD89LiezeP4yfZ6M57FhDLrYFEXCM5VAUagUlEJRJgJVIVnGCy4yxhJpGGQVq9KCGSHBpFIKFAkKIalOh-TueHfr248dhi7f2GCwabTDdhdyKmUGTKQZ9PT2H123O-_673qVqFRxzlWv6FEZ34bgscq33m603-cU8kP4-SH8_BB-_ht-v3Nz3LGI-OclpVxRkX4DhwJ_OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729395559</pqid></control><display><type>article</type><title>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ganping Ju ; Yingguo Peng ; Chang, Eric K. C. ; Yinfeng Ding ; Wu, Alexander Q. ; Xiaobin Zhu ; Kubota, Yukiko ; Klemmer, Timothy J. ; Amini, Hassib ; Li Gao ; Zhaohui Fan ; Rausch, Tim ; Subedi, Pradeep ; Minjie Ma ; Kalarickal, Sangita ; Rea, Chris J. ; Dimitrov, Dimitar V. ; Pin-Wei Huang ; Kangkang Wang ; Xi Chen ; Chubing Peng ; Weibin Chen ; Dykes, John W. ; Seigler, Mike A. ; Gage, Edward C. ; Chantrell, Roy ; Thiele, Jan-Ulrich</creator><creatorcontrib>Ganping Ju ; Yingguo Peng ; Chang, Eric K. C. ; Yinfeng Ding ; Wu, Alexander Q. ; Xiaobin Zhu ; Kubota, Yukiko ; Klemmer, Timothy J. ; Amini, Hassib ; Li Gao ; Zhaohui Fan ; Rausch, Tim ; Subedi, Pradeep ; Minjie Ma ; Kalarickal, Sangita ; Rea, Chris J. ; Dimitrov, Dimitar V. ; Pin-Wei Huang ; Kangkang Wang ; Xi Chen ; Chubing Peng ; Weibin Chen ; Dykes, John W. ; Seigler, Mike A. ; Gage, Edward C. ; Chantrell, Roy ; Thiele, Jan-Ulrich</creatorcontrib><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (&gt;2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2015.2439690</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropy ; BTD demo ; Density ; FePtX media ; HAMR (Heat assisted magnetic recording) ; Heat-assisted magnetic recording ; Jitter ; Magnetic heads ; Magnetic recording ; Magnetic tape ; Magnetism ; Media ; media microstructure ; Microstructure ; NFT (Near field transducer) ; TC distributions ; Temperature distribution ; Temperature measurement ; Thermal conductivity ; Thermal design ; Transducers</subject><ispartof>IEEE transactions on magnetics, 2015-11, Vol.51 (11), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</citedby><cites>FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7115916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7115916$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ganping Ju</creatorcontrib><creatorcontrib>Yingguo Peng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Yinfeng Ding</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Li Gao</creatorcontrib><creatorcontrib>Zhaohui Fan</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Subedi, Pradeep</creatorcontrib><creatorcontrib>Minjie Ma</creatorcontrib><creatorcontrib>Kalarickal, Sangita</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Dimitrov, Dimitar V.</creatorcontrib><creatorcontrib>Pin-Wei Huang</creatorcontrib><creatorcontrib>Kangkang Wang</creatorcontrib><creatorcontrib>Xi Chen</creatorcontrib><creatorcontrib>Chubing Peng</creatorcontrib><creatorcontrib>Weibin Chen</creatorcontrib><creatorcontrib>Dykes, John W.</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Gage, Edward C.</creatorcontrib><creatorcontrib>Chantrell, Roy</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><title>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (&gt;2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .</description><subject>Anisotropy</subject><subject>BTD demo</subject><subject>Density</subject><subject>FePtX media</subject><subject>HAMR (Heat assisted magnetic recording)</subject><subject>Heat-assisted magnetic recording</subject><subject>Jitter</subject><subject>Magnetic heads</subject><subject>Magnetic recording</subject><subject>Magnetic tape</subject><subject>Magnetism</subject><subject>Media</subject><subject>media microstructure</subject><subject>Microstructure</subject><subject>NFT (Near field transducer)</subject><subject>TC distributions</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal design</subject><subject>Transducers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1Lw0AQBuBFFKzVHyBeAl68pM4m-5E9lqqt0KJIPYfNZpJuSTd1NxXqrze14sHTMMwzw_ASck1hRCmo--ViPB0lQPkoYakSCk7IgCpGYwChTskAgGaxYoKdk4sQ1n3LOIUBsTNbr6IHdMF2-2iGuovHIdjQYRktdO2wsyZ6Q9P60ro6WmBpdaRdGY3LT-1MryYr7bXp0Nsv3dnWxa--rT2G8MP6adOgqzFckrNKNwGvfuuQvD89LiezeP4yfZ6M57FhDLrYFEXCM5VAUagUlEJRJgJVIVnGCy4yxhJpGGQVq9KCGSHBpFIKFAkKIalOh-TueHfr248dhi7f2GCwabTDdhdyKmUGTKQZ9PT2H123O-_673qVqFRxzlWv6FEZ34bgscq33m603-cU8kP4-SH8_BB-_ht-v3Nz3LGI-OclpVxRkX4DhwJ_OA</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Ganping Ju</creator><creator>Yingguo Peng</creator><creator>Chang, Eric K. C.</creator><creator>Yinfeng Ding</creator><creator>Wu, Alexander Q.</creator><creator>Xiaobin Zhu</creator><creator>Kubota, Yukiko</creator><creator>Klemmer, Timothy J.</creator><creator>Amini, Hassib</creator><creator>Li Gao</creator><creator>Zhaohui Fan</creator><creator>Rausch, Tim</creator><creator>Subedi, Pradeep</creator><creator>Minjie Ma</creator><creator>Kalarickal, Sangita</creator><creator>Rea, Chris J.</creator><creator>Dimitrov, Dimitar V.</creator><creator>Pin-Wei Huang</creator><creator>Kangkang Wang</creator><creator>Xi Chen</creator><creator>Chubing Peng</creator><creator>Weibin Chen</creator><creator>Dykes, John W.</creator><creator>Seigler, Mike A.</creator><creator>Gage, Edward C.</creator><creator>Chantrell, Roy</creator><creator>Thiele, Jan-Ulrich</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201511</creationdate><title>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</title><author>Ganping Ju ; Yingguo Peng ; Chang, Eric K. C. ; Yinfeng Ding ; Wu, Alexander Q. ; Xiaobin Zhu ; Kubota, Yukiko ; Klemmer, Timothy J. ; Amini, Hassib ; Li Gao ; Zhaohui Fan ; Rausch, Tim ; Subedi, Pradeep ; Minjie Ma ; Kalarickal, Sangita ; Rea, Chris J. ; Dimitrov, Dimitar V. ; Pin-Wei Huang ; Kangkang Wang ; Xi Chen ; Chubing Peng ; Weibin Chen ; Dykes, John W. ; Seigler, Mike A. ; Gage, Edward C. ; Chantrell, Roy ; Thiele, Jan-Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-cbb258920bb93099e6d26e9b7485b5684427c408f4f3b4c670c3776e62e6671a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropy</topic><topic>BTD demo</topic><topic>Density</topic><topic>FePtX media</topic><topic>HAMR (Heat assisted magnetic recording)</topic><topic>Heat-assisted magnetic recording</topic><topic>Jitter</topic><topic>Magnetic heads</topic><topic>Magnetic recording</topic><topic>Magnetic tape</topic><topic>Magnetism</topic><topic>Media</topic><topic>media microstructure</topic><topic>Microstructure</topic><topic>NFT (Near field transducer)</topic><topic>TC distributions</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal design</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganping Ju</creatorcontrib><creatorcontrib>Yingguo Peng</creatorcontrib><creatorcontrib>Chang, Eric K. C.</creatorcontrib><creatorcontrib>Yinfeng Ding</creatorcontrib><creatorcontrib>Wu, Alexander Q.</creatorcontrib><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Kubota, Yukiko</creatorcontrib><creatorcontrib>Klemmer, Timothy J.</creatorcontrib><creatorcontrib>Amini, Hassib</creatorcontrib><creatorcontrib>Li Gao</creatorcontrib><creatorcontrib>Zhaohui Fan</creatorcontrib><creatorcontrib>Rausch, Tim</creatorcontrib><creatorcontrib>Subedi, Pradeep</creatorcontrib><creatorcontrib>Minjie Ma</creatorcontrib><creatorcontrib>Kalarickal, Sangita</creatorcontrib><creatorcontrib>Rea, Chris J.</creatorcontrib><creatorcontrib>Dimitrov, Dimitar V.</creatorcontrib><creatorcontrib>Pin-Wei Huang</creatorcontrib><creatorcontrib>Kangkang Wang</creatorcontrib><creatorcontrib>Xi Chen</creatorcontrib><creatorcontrib>Chubing Peng</creatorcontrib><creatorcontrib>Weibin Chen</creatorcontrib><creatorcontrib>Dykes, John W.</creatorcontrib><creatorcontrib>Seigler, Mike A.</creatorcontrib><creatorcontrib>Gage, Edward C.</creatorcontrib><creatorcontrib>Chantrell, Roy</creatorcontrib><creatorcontrib>Thiele, Jan-Ulrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganping Ju</au><au>Yingguo Peng</au><au>Chang, Eric K. C.</au><au>Yinfeng Ding</au><au>Wu, Alexander Q.</au><au>Xiaobin Zhu</au><au>Kubota, Yukiko</au><au>Klemmer, Timothy J.</au><au>Amini, Hassib</au><au>Li Gao</au><au>Zhaohui Fan</au><au>Rausch, Tim</au><au>Subedi, Pradeep</au><au>Minjie Ma</au><au>Kalarickal, Sangita</au><au>Rea, Chris J.</au><au>Dimitrov, Dimitar V.</au><au>Pin-Wei Huang</au><au>Kangkang Wang</au><au>Xi Chen</au><au>Chubing Peng</au><au>Weibin Chen</au><au>Dykes, John W.</au><au>Seigler, Mike A.</au><au>Gage, Edward C.</au><au>Chantrell, Roy</au><au>Thiele, Jan-Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2015-11</date><risdate>2015</risdate><volume>51</volume><issue>11</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Heat-assisted magnetic recording (HAMR) is being developed as the next generation magnetic recording technology. Critical components of this technology, such as plasmonic near-field transducer (NFT) and high anisotropy granular FePt media, as well as the performance and reliability of fully integrated drives have been reported. This paper will focus on the progress and challenges of HAMR media, including microstructure and thermal design as well as the testing and characterization at high field and high temperature. Due to the importance of the Curie temperature distribution, σT C , for HAMR, we present a newly developed temperature-dependent complex ac susceptibility method to extract σT C for HAMR media. Such novel magnetic characterization methods have been used in combination with other high field magnetic metrology and spin-stand recording to provide feedback for continuous improvements of HAMR media. Together with NFT and write head design, the thermal design, σT C , and microstructure of the media are key factors to reduce the transition jitter below 2 nm as demonstrated in a previously reported 1 Tb/in 2 HAMR demonstration. Here, we report the further improvements by significantly enabling higher linear density (&gt;2500 kfci) HAMR and steady progress in areal density to 1.402 Tb/in 2 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2015.2439690</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2015-11, Vol.51 (11), p.1-9
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2015_2439690
source IEEE/IET Electronic Library (IEL)
subjects Anisotropy
BTD demo
Density
FePtX media
HAMR (Heat assisted magnetic recording)
Heat-assisted magnetic recording
Jitter
Magnetic heads
Magnetic recording
Magnetic tape
Magnetism
Media
media microstructure
Microstructure
NFT (Near field transducer)
TC distributions
Temperature distribution
Temperature measurement
Thermal conductivity
Thermal design
Transducers
title High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization-Progress and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Density%20Heat-Assisted%20Magnetic%20Recording%20Media%20and%20Advanced%20Characterization-Progress%20and%20Challenges&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ganping%20Ju&rft.date=2015-11&rft.volume=51&rft.issue=11&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2015.2439690&rft_dat=%3Cproquest_RIE%3E1778046380%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729395559&rft_id=info:pmid/&rft_ieee_id=7115916&rfr_iscdi=true