Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers

Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2013-05, Vol.49 (5), p.1789-1792
Hauptverfasser: Gizewski, Tomasz, Goleman, Ryszard, Stryczewska, Henryka Danuta, Wac-Wlodarczyk, Andrzej, Nafalski, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1792
container_issue 5
container_start_page 1789
container_title IEEE transactions on magnetics
container_volume 49
creator Gizewski, Tomasz
Goleman, Ryszard
Stryczewska, Henryka Danuta
Wac-Wlodarczyk, Andrzej
Nafalski, Andrew
description Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.
doi_str_mv 10.1109/TMAG.2013.2244200
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2013_2244200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514661</ieee_id><sourcerecordid>2969837701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e3012dca2e0e9a8920587d24a2505bede5c61006d50801216aabf8ca6f1dfdfe3</originalsourceid><addsrcrecordid>eNqFkcFqGzEQhkVpIK7TBwi9CEohl3U0Wq0sHY1pU4PT5ODQo1Ck2UZmvetK2kDePjI2PvTSk6TRNz8zfIRcA5sBMH27uV_czTiDesa5EJyxD2QCWkDFmNQfyYQxUJUWUlySTylty1M0wCbE_Rp3GIOzHX20OWPs6cpjn0NbajkMfbXY77vTneaBrno_uhxekW4w5dD_ofeYXwZPf4f8QhdjHnaFdXTZ2ZRKCsZ0RS5a2yX8fDqn5OnH983yZ7V-uFstF-vK1QJyhTUD7p3lyFBbpTlr1NxzYXnDmmf02DgJZR3fMFVIkNY-t8pZ2YJvfYv1lNwcc_dx-DuW6cwuJIddZ3scxmRgriRoOQfxf1QUWDVC64J-_QfdDmPsyyIG6jIK6BpUoeBIuTikFLE1-xh2Nr4ZYOZgyBwMmYMhczJUer6dkm0qAtpoexfSuZHPhRJcyMJ9OXIBEc_fsgEhJdTvLZ-Zgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350819318</pqid></control><display><type>article</type><title>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Gizewski, Tomasz ; Goleman, Ryszard ; Stryczewska, Henryka Danuta ; Wac-Wlodarczyk, Andrzej ; Nafalski, Andrew</creator><creatorcontrib>Gizewski, Tomasz ; Goleman, Ryszard ; Stryczewska, Henryka Danuta ; Wac-Wlodarczyk, Andrzej ; Nafalski, Andrew</creatorcontrib><description>Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2013.2244200</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Assessments ; Automatic classifiers ; Bridges (structures) ; Classifiers ; Coils ; Cross-disciplinary physics: materials science; rheology ; Defects ; Electric potential ; Exact sciences and technology ; hysteresis ; Magnetic hysteresis ; Magnetism ; Materials science ; Mathematical models ; Meteorology ; nondestructive testing ; Numerical models ; Other topics in materials science ; Physics ; Saturation magnetization ; Shape ; Simulation ; Studies ; Vectors ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1789-1792</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-e3012dca2e0e9a8920587d24a2505bede5c61006d50801216aabf8ca6f1dfdfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514661$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27484246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gizewski, Tomasz</creatorcontrib><creatorcontrib>Goleman, Ryszard</creatorcontrib><creatorcontrib>Stryczewska, Henryka Danuta</creatorcontrib><creatorcontrib>Wac-Wlodarczyk, Andrzej</creatorcontrib><creatorcontrib>Nafalski, Andrew</creatorcontrib><title>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.</description><subject>Assessments</subject><subject>Automatic classifiers</subject><subject>Bridges (structures)</subject><subject>Classifiers</subject><subject>Coils</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>hysteresis</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>nondestructive testing</subject><subject>Numerical models</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Saturation magnetization</subject><subject>Shape</subject><subject>Simulation</subject><subject>Studies</subject><subject>Vectors</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkcFqGzEQhkVpIK7TBwi9CEohl3U0Wq0sHY1pU4PT5ODQo1Ck2UZmvetK2kDePjI2PvTSk6TRNz8zfIRcA5sBMH27uV_czTiDesa5EJyxD2QCWkDFmNQfyYQxUJUWUlySTylty1M0wCbE_Rp3GIOzHX20OWPs6cpjn0NbajkMfbXY77vTneaBrno_uhxekW4w5dD_ofeYXwZPf4f8QhdjHnaFdXTZ2ZRKCsZ0RS5a2yX8fDqn5OnH983yZ7V-uFstF-vK1QJyhTUD7p3lyFBbpTlr1NxzYXnDmmf02DgJZR3fMFVIkNY-t8pZ2YJvfYv1lNwcc_dx-DuW6cwuJIddZ3scxmRgriRoOQfxf1QUWDVC64J-_QfdDmPsyyIG6jIK6BpUoeBIuTikFLE1-xh2Nr4ZYOZgyBwMmYMhczJUer6dkm0qAtpoexfSuZHPhRJcyMJ9OXIBEc_fsgEhJdTvLZ-Zgg</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Gizewski, Tomasz</creator><creator>Goleman, Ryszard</creator><creator>Stryczewska, Henryka Danuta</creator><creator>Wac-Wlodarczyk, Andrzej</creator><creator>Nafalski, Andrew</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130501</creationdate><title>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</title><author>Gizewski, Tomasz ; Goleman, Ryszard ; Stryczewska, Henryka Danuta ; Wac-Wlodarczyk, Andrzej ; Nafalski, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e3012dca2e0e9a8920587d24a2505bede5c61006d50801216aabf8ca6f1dfdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assessments</topic><topic>Automatic classifiers</topic><topic>Bridges (structures)</topic><topic>Classifiers</topic><topic>Coils</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>hysteresis</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>nondestructive testing</topic><topic>Numerical models</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Saturation magnetization</topic><topic>Shape</topic><topic>Simulation</topic><topic>Studies</topic><topic>Vectors</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Gizewski, Tomasz</creatorcontrib><creatorcontrib>Goleman, Ryszard</creatorcontrib><creatorcontrib>Stryczewska, Henryka Danuta</creatorcontrib><creatorcontrib>Wac-Wlodarczyk, Andrzej</creatorcontrib><creatorcontrib>Nafalski, Andrew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gizewski, Tomasz</au><au>Goleman, Ryszard</au><au>Stryczewska, Henryka Danuta</au><au>Wac-Wlodarczyk, Andrzej</au><au>Nafalski, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>49</volume><issue>5</issue><spage>1789</spage><epage>1792</epage><pages>1789-1792</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2013.2244200</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1789-1792
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2013_2244200
source IEEE Electronic Library (IEL)
subjects Assessments
Automatic classifiers
Bridges (structures)
Classifiers
Coils
Cross-disciplinary physics: materials science
rheology
Defects
Electric potential
Exact sciences and technology
hysteresis
Magnetic hysteresis
Magnetism
Materials science
Mathematical models
Meteorology
nondestructive testing
Numerical models
Other topics in materials science
Physics
Saturation magnetization
Shape
Simulation
Studies
Vectors
Voltage
title Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Pattern%20Identification-Application%20to%20Inductive%20Testing%20Method%20With%20Automatic%20Classifiers&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Gizewski,%20Tomasz&rft.date=2013-05-01&rft.volume=49&rft.issue=5&rft.spage=1789&rft.epage=1792&rft.pages=1789-1792&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2013.2244200&rft_dat=%3Cproquest_RIE%3E2969837701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350819318&rft_id=info:pmid/&rft_ieee_id=6514661&rfr_iscdi=true