Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers
Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the diff...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2013-05, Vol.49 (5), p.1789-1792 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1792 |
---|---|
container_issue | 5 |
container_start_page | 1789 |
container_title | IEEE transactions on magnetics |
container_volume | 49 |
creator | Gizewski, Tomasz Goleman, Ryszard Stryczewska, Henryka Danuta Wac-Wlodarczyk, Andrzej Nafalski, Andrew |
description | Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed. |
doi_str_mv | 10.1109/TMAG.2013.2244200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2013_2244200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514661</ieee_id><sourcerecordid>2969837701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e3012dca2e0e9a8920587d24a2505bede5c61006d50801216aabf8ca6f1dfdfe3</originalsourceid><addsrcrecordid>eNqFkcFqGzEQhkVpIK7TBwi9CEohl3U0Wq0sHY1pU4PT5ODQo1Ck2UZmvetK2kDePjI2PvTSk6TRNz8zfIRcA5sBMH27uV_czTiDesa5EJyxD2QCWkDFmNQfyYQxUJUWUlySTylty1M0wCbE_Rp3GIOzHX20OWPs6cpjn0NbajkMfbXY77vTneaBrno_uhxekW4w5dD_ofeYXwZPf4f8QhdjHnaFdXTZ2ZRKCsZ0RS5a2yX8fDqn5OnH983yZ7V-uFstF-vK1QJyhTUD7p3lyFBbpTlr1NxzYXnDmmf02DgJZR3fMFVIkNY-t8pZ2YJvfYv1lNwcc_dx-DuW6cwuJIddZ3scxmRgriRoOQfxf1QUWDVC64J-_QfdDmPsyyIG6jIK6BpUoeBIuTikFLE1-xh2Nr4ZYOZgyBwMmYMhczJUer6dkm0qAtpoexfSuZHPhRJcyMJ9OXIBEc_fsgEhJdTvLZ-Zgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350819318</pqid></control><display><type>article</type><title>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Gizewski, Tomasz ; Goleman, Ryszard ; Stryczewska, Henryka Danuta ; Wac-Wlodarczyk, Andrzej ; Nafalski, Andrew</creator><creatorcontrib>Gizewski, Tomasz ; Goleman, Ryszard ; Stryczewska, Henryka Danuta ; Wac-Wlodarczyk, Andrzej ; Nafalski, Andrew</creatorcontrib><description>Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2013.2244200</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Assessments ; Automatic classifiers ; Bridges (structures) ; Classifiers ; Coils ; Cross-disciplinary physics: materials science; rheology ; Defects ; Electric potential ; Exact sciences and technology ; hysteresis ; Magnetic hysteresis ; Magnetism ; Materials science ; Mathematical models ; Meteorology ; nondestructive testing ; Numerical models ; Other topics in materials science ; Physics ; Saturation magnetization ; Shape ; Simulation ; Studies ; Vectors ; Voltage</subject><ispartof>IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1789-1792</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-e3012dca2e0e9a8920587d24a2505bede5c61006d50801216aabf8ca6f1dfdfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514661$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27484246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gizewski, Tomasz</creatorcontrib><creatorcontrib>Goleman, Ryszard</creatorcontrib><creatorcontrib>Stryczewska, Henryka Danuta</creatorcontrib><creatorcontrib>Wac-Wlodarczyk, Andrzej</creatorcontrib><creatorcontrib>Nafalski, Andrew</creatorcontrib><title>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.</description><subject>Assessments</subject><subject>Automatic classifiers</subject><subject>Bridges (structures)</subject><subject>Classifiers</subject><subject>Coils</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>hysteresis</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>nondestructive testing</subject><subject>Numerical models</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Saturation magnetization</subject><subject>Shape</subject><subject>Simulation</subject><subject>Studies</subject><subject>Vectors</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkcFqGzEQhkVpIK7TBwi9CEohl3U0Wq0sHY1pU4PT5ODQo1Ck2UZmvetK2kDePjI2PvTSk6TRNz8zfIRcA5sBMH27uV_czTiDesa5EJyxD2QCWkDFmNQfyYQxUJUWUlySTylty1M0wCbE_Rp3GIOzHX20OWPs6cpjn0NbajkMfbXY77vTneaBrno_uhxekW4w5dD_ofeYXwZPf4f8QhdjHnaFdXTZ2ZRKCsZ0RS5a2yX8fDqn5OnH983yZ7V-uFstF-vK1QJyhTUD7p3lyFBbpTlr1NxzYXnDmmf02DgJZR3fMFVIkNY-t8pZ2YJvfYv1lNwcc_dx-DuW6cwuJIddZ3scxmRgriRoOQfxf1QUWDVC64J-_QfdDmPsyyIG6jIK6BpUoeBIuTikFLE1-xh2Nr4ZYOZgyBwMmYMhczJUer6dkm0qAtpoexfSuZHPhRJcyMJ9OXIBEc_fsgEhJdTvLZ-Zgg</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Gizewski, Tomasz</creator><creator>Goleman, Ryszard</creator><creator>Stryczewska, Henryka Danuta</creator><creator>Wac-Wlodarczyk, Andrzej</creator><creator>Nafalski, Andrew</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130501</creationdate><title>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</title><author>Gizewski, Tomasz ; Goleman, Ryszard ; Stryczewska, Henryka Danuta ; Wac-Wlodarczyk, Andrzej ; Nafalski, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e3012dca2e0e9a8920587d24a2505bede5c61006d50801216aabf8ca6f1dfdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assessments</topic><topic>Automatic classifiers</topic><topic>Bridges (structures)</topic><topic>Classifiers</topic><topic>Coils</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>hysteresis</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>nondestructive testing</topic><topic>Numerical models</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Saturation magnetization</topic><topic>Shape</topic><topic>Simulation</topic><topic>Studies</topic><topic>Vectors</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Gizewski, Tomasz</creatorcontrib><creatorcontrib>Goleman, Ryszard</creatorcontrib><creatorcontrib>Stryczewska, Henryka Danuta</creatorcontrib><creatorcontrib>Wac-Wlodarczyk, Andrzej</creatorcontrib><creatorcontrib>Nafalski, Andrew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gizewski, Tomasz</au><au>Goleman, Ryszard</au><au>Stryczewska, Henryka Danuta</au><au>Wac-Wlodarczyk, Andrzej</au><au>Nafalski, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>49</volume><issue>5</issue><spage>1789</spage><epage>1792</epage><pages>1789-1792</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Automatic algorithms which include classifiers require effective systems of data acquisition, data modeling or other data source in order to create probability groups. Their role is to process the information to the basic structure of the model with a significant number of details. Owing to the differences between the probability groups, the classifier allocates the images to a selected class. At the same time the assessment of details' quality is created. The main topic of this article concerns the numerical modeling of a closed loop, generated from the study of the unbalanced voltage of the Maxwell bridge. It forms an image of material defects, determined by the numerical study of the sample and pattern that were analyzed in the work by changing the shape of a closed loop due to changes in size of the defect. The changes in the shape of the closed loops, as results of changes in the defect size were analyzed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2013.2244200</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2013-05, Vol.49 (5), p.1789-1792 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2013_2244200 |
source | IEEE Electronic Library (IEL) |
subjects | Assessments Automatic classifiers Bridges (structures) Classifiers Coils Cross-disciplinary physics: materials science rheology Defects Electric potential Exact sciences and technology hysteresis Magnetic hysteresis Magnetism Materials science Mathematical models Meteorology nondestructive testing Numerical models Other topics in materials science Physics Saturation magnetization Shape Simulation Studies Vectors Voltage |
title | Numerical Pattern Identification-Application to Inductive Testing Method With Automatic Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Pattern%20Identification-Application%20to%20Inductive%20Testing%20Method%20With%20Automatic%20Classifiers&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Gizewski,%20Tomasz&rft.date=2013-05-01&rft.volume=49&rft.issue=5&rft.spage=1789&rft.epage=1792&rft.pages=1789-1792&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2013.2244200&rft_dat=%3Cproquest_RIE%3E2969837701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350819318&rft_id=info:pmid/&rft_ieee_id=6514661&rfr_iscdi=true |