Optimization of Electrodynamic Energy Transfer in Coilguns With Multiple, Uncoupled Stages

A 1-D model for inductive electromagnetic acceleration of projectiles using a coilgun has been nondimensionalized to find relevant scaling parameters. The dynamic impedance parameter, representing the ratio of the resonant period of the unloaded electrical circuit to the time the projectile is elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2013-04, Vol.49 (4), p.1453-1460
Hauptverfasser: Polzin, Kurt A., Adwar, Jake E., Hallock, Ashley K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1460
container_issue 4
container_start_page 1453
container_title IEEE transactions on magnetics
container_volume 49
creator Polzin, Kurt A.
Adwar, Jake E.
Hallock, Ashley K.
description A 1-D model for inductive electromagnetic acceleration of projectiles using a coilgun has been nondimensionalized to find relevant scaling parameters. The dynamic impedance parameter, representing the ratio of the resonant period of the unloaded electrical circuit to the time the projectile is electromagnetically coupled to the coil, is the scaling term that can be adjusted to optimize the electromagnetic energy transfer process. The mutual inductance profile, which represents the ability to convert potential electromagnetic energy into projectile kinetic energy, was modeled for a specific geometry using a semi-empirical function previously found suitable for cylindrical pulsed inductive plasma accelerators. Contour plots representing coilgun efficiency were generated for varying initial projectile velocity across a range of dynamic impedances. The contour plots show that below a given initial velocity a dynamic impedance parameter can be selected to maximize energy transfer to the projectile. This optimum varies as a function of the initial velocity a projectile possessed when it enters the coilgun stage. Once the contour plot is generated for a geometry it can be used to optimize the acceleration process for any stage in a coilgun if the individual coils comprising the stages are electromagnetically uncoupled from each other and the velocity of the projectile as it exits the previous stage is known.
doi_str_mv 10.1109/TMAG.2012.2230271
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2012_2230271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6363606</ieee_id><sourcerecordid>27211163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5e189997cc53522cfd249aa0984920a8a4ab5aa23e6aa848bc9f05e0655563fd3</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiYh-AOOlF28udvqP7ZEQRBMIByEmXjZDt8WaZZe0ywE_vUsgZA4zk3nvJfMj5BHYAICZ1-V8NB1wBnzAuWB8CFekB0ZCxpg216THGOSZkVrekruUfrtVKmA98r3YtWEb_rANTU0bTyeVs21sykON22DppHZxc6DLiHXyLtJQ03ETqs2-TvQrtD90vq_asKvcC13Vttl3U0k_W9y4dE9uPFbJPZx7n6zeJsvxezZbTD_Go1lmuVFtphzkxpihtUoozq0vuTSIzOTScIY5SlwrRC6cRsxlvrbGM-WYVkpp4UvRJ3DKtbFJKTpf7GLYYjwUwIojnOIIpzjCKc5wOs_zybPDZLHy3Xs2pIuRDzkAaNHpnk664Jy7nLXoimnxD-WXbfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of Electrodynamic Energy Transfer in Coilguns With Multiple, Uncoupled Stages</title><source>IEEE Xplore (Online service)</source><creator>Polzin, Kurt A. ; Adwar, Jake E. ; Hallock, Ashley K.</creator><creatorcontrib>Polzin, Kurt A. ; Adwar, Jake E. ; Hallock, Ashley K.</creatorcontrib><description>A 1-D model for inductive electromagnetic acceleration of projectiles using a coilgun has been nondimensionalized to find relevant scaling parameters. The dynamic impedance parameter, representing the ratio of the resonant period of the unloaded electrical circuit to the time the projectile is electromagnetically coupled to the coil, is the scaling term that can be adjusted to optimize the electromagnetic energy transfer process. The mutual inductance profile, which represents the ability to convert potential electromagnetic energy into projectile kinetic energy, was modeled for a specific geometry using a semi-empirical function previously found suitable for cylindrical pulsed inductive plasma accelerators. Contour plots representing coilgun efficiency were generated for varying initial projectile velocity across a range of dynamic impedances. The contour plots show that below a given initial velocity a dynamic impedance parameter can be selected to maximize energy transfer to the projectile. This optimum varies as a function of the initial velocity a projectile possessed when it enters the coilgun stage. Once the contour plot is generated for a geometry it can be used to optimize the acceleration process for any stage in a coilgun if the individual coils comprising the stages are electromagnetically uncoupled from each other and the velocity of the projectile as it exits the previous stage is known.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2012.2230271</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Coilgun ; Coilguns ; Coils ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Inductance ; inductive accelerators ; Integrated circuit modeling ; Materials science ; Mathematical model ; modeling ; optimization ; Other topics in materials science ; Physics ; Projectiles</subject><ispartof>IEEE transactions on magnetics, 2013-04, Vol.49 (4), p.1453-1460</ispartof><rights>2014 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5e189997cc53522cfd249aa0984920a8a4ab5aa23e6aa848bc9f05e0655563fd3</citedby><cites>FETCH-LOGICAL-c295t-5e189997cc53522cfd249aa0984920a8a4ab5aa23e6aa848bc9f05e0655563fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6363606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6363606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27211163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Polzin, Kurt A.</creatorcontrib><creatorcontrib>Adwar, Jake E.</creatorcontrib><creatorcontrib>Hallock, Ashley K.</creatorcontrib><title>Optimization of Electrodynamic Energy Transfer in Coilguns With Multiple, Uncoupled Stages</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A 1-D model for inductive electromagnetic acceleration of projectiles using a coilgun has been nondimensionalized to find relevant scaling parameters. The dynamic impedance parameter, representing the ratio of the resonant period of the unloaded electrical circuit to the time the projectile is electromagnetically coupled to the coil, is the scaling term that can be adjusted to optimize the electromagnetic energy transfer process. The mutual inductance profile, which represents the ability to convert potential electromagnetic energy into projectile kinetic energy, was modeled for a specific geometry using a semi-empirical function previously found suitable for cylindrical pulsed inductive plasma accelerators. Contour plots representing coilgun efficiency were generated for varying initial projectile velocity across a range of dynamic impedances. The contour plots show that below a given initial velocity a dynamic impedance parameter can be selected to maximize energy transfer to the projectile. This optimum varies as a function of the initial velocity a projectile possessed when it enters the coilgun stage. Once the contour plot is generated for a geometry it can be used to optimize the acceleration process for any stage in a coilgun if the individual coils comprising the stages are electromagnetically uncoupled from each other and the velocity of the projectile as it exits the previous stage is known.</description><subject>Acceleration</subject><subject>Coilgun</subject><subject>Coilguns</subject><subject>Coils</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Inductance</subject><subject>inductive accelerators</subject><subject>Integrated circuit modeling</subject><subject>Materials science</subject><subject>Mathematical model</subject><subject>modeling</subject><subject>optimization</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Projectiles</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiYh-AOOlF28udvqP7ZEQRBMIByEmXjZDt8WaZZe0ywE_vUsgZA4zk3nvJfMj5BHYAICZ1-V8NB1wBnzAuWB8CFekB0ZCxpg216THGOSZkVrekruUfrtVKmA98r3YtWEb_rANTU0bTyeVs21sykON22DppHZxc6DLiHXyLtJQ03ETqs2-TvQrtD90vq_asKvcC13Vttl3U0k_W9y4dE9uPFbJPZx7n6zeJsvxezZbTD_Go1lmuVFtphzkxpihtUoozq0vuTSIzOTScIY5SlwrRC6cRsxlvrbGM-WYVkpp4UvRJ3DKtbFJKTpf7GLYYjwUwIojnOIIpzjCKc5wOs_zybPDZLHy3Xs2pIuRDzkAaNHpnk664Jy7nLXoimnxD-WXbfk</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Polzin, Kurt A.</creator><creator>Adwar, Jake E.</creator><creator>Hallock, Ashley K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Optimization of Electrodynamic Energy Transfer in Coilguns With Multiple, Uncoupled Stages</title><author>Polzin, Kurt A. ; Adwar, Jake E. ; Hallock, Ashley K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5e189997cc53522cfd249aa0984920a8a4ab5aa23e6aa848bc9f05e0655563fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Coilgun</topic><topic>Coilguns</topic><topic>Coils</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Inductance</topic><topic>inductive accelerators</topic><topic>Integrated circuit modeling</topic><topic>Materials science</topic><topic>Mathematical model</topic><topic>modeling</topic><topic>optimization</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Projectiles</topic><toplevel>online_resources</toplevel><creatorcontrib>Polzin, Kurt A.</creatorcontrib><creatorcontrib>Adwar, Jake E.</creatorcontrib><creatorcontrib>Hallock, Ashley K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Polzin, Kurt A.</au><au>Adwar, Jake E.</au><au>Hallock, Ashley K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Electrodynamic Energy Transfer in Coilguns With Multiple, Uncoupled Stages</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>49</volume><issue>4</issue><spage>1453</spage><epage>1460</epage><pages>1453-1460</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A 1-D model for inductive electromagnetic acceleration of projectiles using a coilgun has been nondimensionalized to find relevant scaling parameters. The dynamic impedance parameter, representing the ratio of the resonant period of the unloaded electrical circuit to the time the projectile is electromagnetically coupled to the coil, is the scaling term that can be adjusted to optimize the electromagnetic energy transfer process. The mutual inductance profile, which represents the ability to convert potential electromagnetic energy into projectile kinetic energy, was modeled for a specific geometry using a semi-empirical function previously found suitable for cylindrical pulsed inductive plasma accelerators. Contour plots representing coilgun efficiency were generated for varying initial projectile velocity across a range of dynamic impedances. The contour plots show that below a given initial velocity a dynamic impedance parameter can be selected to maximize energy transfer to the projectile. This optimum varies as a function of the initial velocity a projectile possessed when it enters the coilgun stage. Once the contour plot is generated for a geometry it can be used to optimize the acceleration process for any stage in a coilgun if the individual coils comprising the stages are electromagnetically uncoupled from each other and the velocity of the projectile as it exits the previous stage is known.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2012.2230271</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2013-04, Vol.49 (4), p.1453-1460
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_2012_2230271
source IEEE Xplore (Online service)
subjects Acceleration
Coilgun
Coilguns
Coils
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Inductance
inductive accelerators
Integrated circuit modeling
Materials science
Mathematical model
modeling
optimization
Other topics in materials science
Physics
Projectiles
title Optimization of Electrodynamic Energy Transfer in Coilguns With Multiple, Uncoupled Stages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Electrodynamic%20Energy%20Transfer%20in%20Coilguns%20With%20Multiple,%20Uncoupled%20Stages&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Polzin,%20Kurt%20A.&rft.date=2013-04-01&rft.volume=49&rft.issue=4&rft.spage=1453&rft.epage=1460&rft.pages=1453-1460&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2012.2230271&rft_dat=%3Cpascalfrancis_RIE%3E27211163%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6363606&rfr_iscdi=true