Sup-Resonant Response of a Nonautonomous Maglev System With Delayed Acceleration Feedback Control
A Maglev system with delayed acceleration feedback control is disturbed by the deflection of flexible guideway, and resonant response may take place. We have investigated sup-resonant response of the Maglev system by employing center manifold reduction and the method of multiple scales. We present t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2008-10, Vol.44 (10), p.2338-2350 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2350 |
---|---|
container_issue | 10 |
container_start_page | 2338 |
container_title | IEEE transactions on magnetics |
container_volume | 44 |
creator | Wang, Hongpo Li, Jie Zhang, Kun |
description | A Maglev system with delayed acceleration feedback control is disturbed by the deflection of flexible guideway, and resonant response may take place. We have investigated sup-resonant response of the Maglev system by employing center manifold reduction and the method of multiple scales. We present the dynamic model and expand it to a third-order Taylor series. Taking time delay as its bifurcation parameter, we discuss the condition for the occurring of Hopf bifurcation. We apply center manifold reduction to get the Poincare normal form of the nonlinear system and employ the perturbation technique to study sup-resonant response of the system. This yields the sup-resonant periodic solution of the normal form. We analyze the stability condition of the free oscillation in the solution and discuss the relationship between guideway excitation and periodic solution. Finally, numerical results show how time delay, control, and excitation parameters affect the system response. With the proper system parameter, the free oscillation may vanish and only the periodic solution plays a part. Time delay can control amplitude of the forced oscillation. The appearance of the chaos phenomenon can also be governed by regulating time delay. And judiciously selecting a control parameter makes it possible to suppress the response. |
doi_str_mv | 10.1109/TMAG.2008.2001763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_2008_2001763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4629412</ieee_id><sourcerecordid>2579292631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-664bd4459fc46a77804948ddc6bbfcc54b381b3413c338abc8772f93232009ab3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq0KpC4LP6DqxUKinAJ27PjjuNqWbSWgUhfUo-U4kzY0ay92Umn_PY52xYEDl7Fn_MzoHb8IfaLkilKirx_uFqurkhA1BSoF-4BmVHNaECL0EZrloio0F_wjOknpKae8omSG7HrcFr8gBW_9gPNlG3wCHFps8X0ujkPwYRPGhO_snx7-4_UuDbDBv7vhL_4Kvd1BgxfOQQ_RDl3w-Aagqa37h5fBDzH0p-i4tX2Cs8M5R4833x6W34vbn6sfy8Vt4ZiqhkIIXjecV7p1XFgpFeGaq6Zxoq5b5ypeM0VrxilzjClbOyVl2WpWsrywtjWbo8v93G0MzyOkwWy6lHX11kPWb5SsiBC0lJn88i7JuGaS5jBH52_ApzBGn7cwevpmokmZIbqHXAwpRWjNNnYbG3eGEjN5YyZvzOSNOXiTey4Og21ytm-j9a5Lr40lEVIJOgn4vOc6AHh95qLMzpbsBdZ-lnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920010902</pqid></control><display><type>article</type><title>Sup-Resonant Response of a Nonautonomous Maglev System With Delayed Acceleration Feedback Control</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hongpo ; Li, Jie ; Zhang, Kun</creator><creatorcontrib>Wang, Hongpo ; Li, Jie ; Zhang, Kun</creatorcontrib><description>A Maglev system with delayed acceleration feedback control is disturbed by the deflection of flexible guideway, and resonant response may take place. We have investigated sup-resonant response of the Maglev system by employing center manifold reduction and the method of multiple scales. We present the dynamic model and expand it to a third-order Taylor series. Taking time delay as its bifurcation parameter, we discuss the condition for the occurring of Hopf bifurcation. We apply center manifold reduction to get the Poincare normal form of the nonlinear system and employ the perturbation technique to study sup-resonant response of the system. This yields the sup-resonant periodic solution of the normal form. We analyze the stability condition of the free oscillation in the solution and discuss the relationship between guideway excitation and periodic solution. Finally, numerical results show how time delay, control, and excitation parameters affect the system response. With the proper system parameter, the free oscillation may vanish and only the periodic solution plays a part. Time delay can control amplitude of the forced oscillation. The appearance of the chaos phenomenon can also be governed by regulating time delay. And judiciously selecting a control parameter makes it possible to suppress the response.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2008.2001763</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Bifurcation ; Chaos ; Cross-disciplinary physics: materials science; rheology ; Delay effects ; Delay systems ; delayed acceleration feedback control ; Dynamical systems ; Exact sciences and technology ; Feedback control ; Hopf bifurcation ; Magnetic levitation ; Magnetic levitation systems ; Magnetic levitation vehicles ; Magnetism ; Materials science ; Mathematical models ; nonautonomous maglev system ; Nonlinear dynamical systems ; Nonlinear systems ; Oscillations ; Other topics in materials science ; Physics ; Reduction ; Resonance ; Studies ; sup-resonant response ; Taylor series ; Time delay</subject><ispartof>IEEE transactions on magnetics, 2008-10, Vol.44 (10), p.2338-2350</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-664bd4459fc46a77804948ddc6bbfcc54b381b3413c338abc8772f93232009ab3</citedby><cites>FETCH-LOGICAL-c385t-664bd4459fc46a77804948ddc6bbfcc54b381b3413c338abc8772f93232009ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4629412$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4629412$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20678619$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongpo</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><title>Sup-Resonant Response of a Nonautonomous Maglev System With Delayed Acceleration Feedback Control</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A Maglev system with delayed acceleration feedback control is disturbed by the deflection of flexible guideway, and resonant response may take place. We have investigated sup-resonant response of the Maglev system by employing center manifold reduction and the method of multiple scales. We present the dynamic model and expand it to a third-order Taylor series. Taking time delay as its bifurcation parameter, we discuss the condition for the occurring of Hopf bifurcation. We apply center manifold reduction to get the Poincare normal form of the nonlinear system and employ the perturbation technique to study sup-resonant response of the system. This yields the sup-resonant periodic solution of the normal form. We analyze the stability condition of the free oscillation in the solution and discuss the relationship between guideway excitation and periodic solution. Finally, numerical results show how time delay, control, and excitation parameters affect the system response. With the proper system parameter, the free oscillation may vanish and only the periodic solution plays a part. Time delay can control amplitude of the forced oscillation. The appearance of the chaos phenomenon can also be governed by regulating time delay. And judiciously selecting a control parameter makes it possible to suppress the response.</description><subject>Acceleration</subject><subject>Bifurcation</subject><subject>Chaos</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Delay effects</subject><subject>Delay systems</subject><subject>delayed acceleration feedback control</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Hopf bifurcation</subject><subject>Magnetic levitation</subject><subject>Magnetic levitation systems</subject><subject>Magnetic levitation vehicles</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>nonautonomous maglev system</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Oscillations</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Reduction</subject><subject>Resonance</subject><subject>Studies</subject><subject>sup-resonant response</subject><subject>Taylor series</subject><subject>Time delay</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1P3DAQhq0KpC4LP6DqxUKinAJ27PjjuNqWbSWgUhfUo-U4kzY0ay92Umn_PY52xYEDl7Fn_MzoHb8IfaLkilKirx_uFqurkhA1BSoF-4BmVHNaECL0EZrloio0F_wjOknpKae8omSG7HrcFr8gBW_9gPNlG3wCHFps8X0ujkPwYRPGhO_snx7-4_UuDbDBv7vhL_4Kvd1BgxfOQQ_RDl3w-Aagqa37h5fBDzH0p-i4tX2Cs8M5R4833x6W34vbn6sfy8Vt4ZiqhkIIXjecV7p1XFgpFeGaq6Zxoq5b5ypeM0VrxilzjClbOyVl2WpWsrywtjWbo8v93G0MzyOkwWy6lHX11kPWb5SsiBC0lJn88i7JuGaS5jBH52_ApzBGn7cwevpmokmZIbqHXAwpRWjNNnYbG3eGEjN5YyZvzOSNOXiTey4Og21ytm-j9a5Lr40lEVIJOgn4vOc6AHh95qLMzpbsBdZ-lnE</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Wang, Hongpo</creator><creator>Li, Jie</creator><creator>Zhang, Kun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081001</creationdate><title>Sup-Resonant Response of a Nonautonomous Maglev System With Delayed Acceleration Feedback Control</title><author>Wang, Hongpo ; Li, Jie ; Zhang, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-664bd4459fc46a77804948ddc6bbfcc54b381b3413c338abc8772f93232009ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Bifurcation</topic><topic>Chaos</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Delay effects</topic><topic>Delay systems</topic><topic>delayed acceleration feedback control</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Hopf bifurcation</topic><topic>Magnetic levitation</topic><topic>Magnetic levitation systems</topic><topic>Magnetic levitation vehicles</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>nonautonomous maglev system</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Oscillations</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Reduction</topic><topic>Resonance</topic><topic>Studies</topic><topic>sup-resonant response</topic><topic>Taylor series</topic><topic>Time delay</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongpo</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hongpo</au><au>Li, Jie</au><au>Zhang, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sup-Resonant Response of a Nonautonomous Maglev System With Delayed Acceleration Feedback Control</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>44</volume><issue>10</issue><spage>2338</spage><epage>2350</epage><pages>2338-2350</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A Maglev system with delayed acceleration feedback control is disturbed by the deflection of flexible guideway, and resonant response may take place. We have investigated sup-resonant response of the Maglev system by employing center manifold reduction and the method of multiple scales. We present the dynamic model and expand it to a third-order Taylor series. Taking time delay as its bifurcation parameter, we discuss the condition for the occurring of Hopf bifurcation. We apply center manifold reduction to get the Poincare normal form of the nonlinear system and employ the perturbation technique to study sup-resonant response of the system. This yields the sup-resonant periodic solution of the normal form. We analyze the stability condition of the free oscillation in the solution and discuss the relationship between guideway excitation and periodic solution. Finally, numerical results show how time delay, control, and excitation parameters affect the system response. With the proper system parameter, the free oscillation may vanish and only the periodic solution plays a part. Time delay can control amplitude of the forced oscillation. The appearance of the chaos phenomenon can also be governed by regulating time delay. And judiciously selecting a control parameter makes it possible to suppress the response.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2008.2001763</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2008-10, Vol.44 (10), p.2338-2350 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_2008_2001763 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Bifurcation Chaos Cross-disciplinary physics: materials science rheology Delay effects Delay systems delayed acceleration feedback control Dynamical systems Exact sciences and technology Feedback control Hopf bifurcation Magnetic levitation Magnetic levitation systems Magnetic levitation vehicles Magnetism Materials science Mathematical models nonautonomous maglev system Nonlinear dynamical systems Nonlinear systems Oscillations Other topics in materials science Physics Reduction Resonance Studies sup-resonant response Taylor series Time delay |
title | Sup-Resonant Response of a Nonautonomous Maglev System With Delayed Acceleration Feedback Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sup-Resonant%20Response%20of%20a%20Nonautonomous%20Maglev%20System%20With%20Delayed%20Acceleration%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Wang,%20Hongpo&rft.date=2008-10-01&rft.volume=44&rft.issue=10&rft.spage=2338&rft.epage=2350&rft.pages=2338-2350&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2008.2001763&rft_dat=%3Cproquest_RIE%3E2579292631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920010902&rft_id=info:pmid/&rft_ieee_id=4629412&rfr_iscdi=true |