Superconductive delay-line technology and applications
Microwave analog signal-processing filters have been realized in the form of coupled niobium striplines on silicon dielectric substrates. Device responses with ± 2-dB amplitude accuracy and 9°-rms phase error have been achieved in amplitude-weighted filters with 37.5 ns of dispersion and 2.3-GHz ban...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1985-03, Vol.21 (2), p.186-192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 2 |
container_start_page | 186 |
container_title | IEEE transactions on magnetics |
container_volume | 21 |
creator | Withers, R. Anderson, A. Green, J. Reible, S. |
description | Microwave analog signal-processing filters have been realized in the form of coupled niobium striplines on silicon dielectric substrates. Device responses with ± 2-dB amplitude accuracy and 9°-rms phase error have been achieved in amplitude-weighted filters with 37.5 ns of dispersion and 2.3-GHz bandwidths. Relative side-lobe levels of -26 dB and less are currently obtained. The achievable dispersion for stripline circuits on a single pair of 5-cm-diameter, 125-μm-thick wafers is limited to about 40 ns by the electro-magnetic coupling between neighboring lines. To achieve greater dispersion two approaches are under development: (1) Stripline circuits are being fabricated on multiple wafer pairs which are physically stacked and electrically concatenated to produce dispersive delay lines with 4-GHz bandwidth and 75-ns dispersion time. Phenolic resin is used as an adhesive to ensure the mechanical integrity of the stacked structure. (2) A technique to fabricate dense stripline circuits on very thin (15-μm) single-crystal silicon superstrates supported by thicker substrates has been demonstrated and preliminary results will be described. A chirp-transform system capable of real-time spectral analysis has been constructed using a pair of the superconductive delay-line filters. A resolution of 43 MHz over an unprecedented 2400-MHz bandwidth with amplitude uniformity of ±1 dB and side-lobe levels of -18 dB was demonstrated. |
doi_str_mv | 10.1109/TMAG.1985.1063647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_1985_1063647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1063647</ieee_id><sourcerecordid>28638453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3f230f33ee8b74e0d1da4f6170e11f674e2c4f34f4767f41a22761e3fe94e09b3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqXwAIglE1vCXew49lhVUJCKGCiz5TpnCEqTECdIfXtSpQNbp9Pd__03fIzdIiSIoB82r4tVglplCYLkUuRnbIZaYAwg9TmbAaCKtZDikl2F8D2uIkOYMfk-tNS5pi4G15e_FBVU2X1clTVFPbmvuqmaz31k6yKybVuVzvZlU4drduFtFejmOOfs4-lxs3yO12-rl-ViHTueqT7mPuXgOSdS21wQFFhY4SXmQIhejqfUCc-FF7nMvUCbprlE4p70SOstn7P76W_bNT8Dhd7syuCoqmxNzRBMqiFTCOlpUEmuRMZPg0IBFzIfQZxA1zUhdORN25U72-0Ngjk4Nwfn5uDcHJ2PnbupUxLRP35K_wCLI3yi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24803467</pqid></control><display><type>article</type><title>Superconductive delay-line technology and applications</title><source>IEEE Electronic Library (IEL)</source><creator>Withers, R. ; Anderson, A. ; Green, J. ; Reible, S.</creator><creatorcontrib>Withers, R. ; Anderson, A. ; Green, J. ; Reible, S.</creatorcontrib><description>Microwave analog signal-processing filters have been realized in the form of coupled niobium striplines on silicon dielectric substrates. Device responses with ± 2-dB amplitude accuracy and 9°-rms phase error have been achieved in amplitude-weighted filters with 37.5 ns of dispersion and 2.3-GHz bandwidths. Relative side-lobe levels of -26 dB and less are currently obtained. The achievable dispersion for stripline circuits on a single pair of 5-cm-diameter, 125-μm-thick wafers is limited to about 40 ns by the electro-magnetic coupling between neighboring lines. To achieve greater dispersion two approaches are under development: (1) Stripline circuits are being fabricated on multiple wafer pairs which are physically stacked and electrically concatenated to produce dispersive delay lines with 4-GHz bandwidth and 75-ns dispersion time. Phenolic resin is used as an adhesive to ensure the mechanical integrity of the stacked structure. (2) A technique to fabricate dense stripline circuits on very thin (15-μm) single-crystal silicon superstrates supported by thicker substrates has been demonstrated and preliminary results will be described. A chirp-transform system capable of real-time spectral analysis has been constructed using a pair of the superconductive delay-line filters. A resolution of 43 MHz over an unprecedented 2400-MHz bandwidth with amplitude uniformity of ±1 dB and side-lobe levels of -18 dB was demonstrated.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1985.1063647</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Coupling circuits ; Delay ; Microwave filters ; Niobium ; Silicon ; Stripline ; Superconducting filters ; Superconducting microwave devices ; Superconductivity</subject><ispartof>IEEE transactions on magnetics, 1985-03, Vol.21 (2), p.186-192</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3f230f33ee8b74e0d1da4f6170e11f674e2c4f34f4767f41a22761e3fe94e09b3</citedby><cites>FETCH-LOGICAL-c358t-3f230f33ee8b74e0d1da4f6170e11f674e2c4f34f4767f41a22761e3fe94e09b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1063647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1063647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Withers, R.</creatorcontrib><creatorcontrib>Anderson, A.</creatorcontrib><creatorcontrib>Green, J.</creatorcontrib><creatorcontrib>Reible, S.</creatorcontrib><title>Superconductive delay-line technology and applications</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Microwave analog signal-processing filters have been realized in the form of coupled niobium striplines on silicon dielectric substrates. Device responses with ± 2-dB amplitude accuracy and 9°-rms phase error have been achieved in amplitude-weighted filters with 37.5 ns of dispersion and 2.3-GHz bandwidths. Relative side-lobe levels of -26 dB and less are currently obtained. The achievable dispersion for stripline circuits on a single pair of 5-cm-diameter, 125-μm-thick wafers is limited to about 40 ns by the electro-magnetic coupling between neighboring lines. To achieve greater dispersion two approaches are under development: (1) Stripline circuits are being fabricated on multiple wafer pairs which are physically stacked and electrically concatenated to produce dispersive delay lines with 4-GHz bandwidth and 75-ns dispersion time. Phenolic resin is used as an adhesive to ensure the mechanical integrity of the stacked structure. (2) A technique to fabricate dense stripline circuits on very thin (15-μm) single-crystal silicon superstrates supported by thicker substrates has been demonstrated and preliminary results will be described. A chirp-transform system capable of real-time spectral analysis has been constructed using a pair of the superconductive delay-line filters. A resolution of 43 MHz over an unprecedented 2400-MHz bandwidth with amplitude uniformity of ±1 dB and side-lobe levels of -18 dB was demonstrated.</description><subject>Bandwidth</subject><subject>Coupling circuits</subject><subject>Delay</subject><subject>Microwave filters</subject><subject>Niobium</subject><subject>Silicon</subject><subject>Stripline</subject><subject>Superconducting filters</subject><subject>Superconducting microwave devices</subject><subject>Superconductivity</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqXwAIglE1vCXew49lhVUJCKGCiz5TpnCEqTECdIfXtSpQNbp9Pd__03fIzdIiSIoB82r4tVglplCYLkUuRnbIZaYAwg9TmbAaCKtZDikl2F8D2uIkOYMfk-tNS5pi4G15e_FBVU2X1clTVFPbmvuqmaz31k6yKybVuVzvZlU4drduFtFejmOOfs4-lxs3yO12-rl-ViHTueqT7mPuXgOSdS21wQFFhY4SXmQIhejqfUCc-FF7nMvUCbprlE4p70SOstn7P76W_bNT8Dhd7syuCoqmxNzRBMqiFTCOlpUEmuRMZPg0IBFzIfQZxA1zUhdORN25U72-0Ngjk4Nwfn5uDcHJ2PnbupUxLRP35K_wCLI3yi</recordid><startdate>19850301</startdate><enddate>19850301</enddate><creator>Withers, R.</creator><creator>Anderson, A.</creator><creator>Green, J.</creator><creator>Reible, S.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7U5</scope></search><sort><creationdate>19850301</creationdate><title>Superconductive delay-line technology and applications</title><author>Withers, R. ; Anderson, A. ; Green, J. ; Reible, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3f230f33ee8b74e0d1da4f6170e11f674e2c4f34f4767f41a22761e3fe94e09b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Bandwidth</topic><topic>Coupling circuits</topic><topic>Delay</topic><topic>Microwave filters</topic><topic>Niobium</topic><topic>Silicon</topic><topic>Stripline</topic><topic>Superconducting filters</topic><topic>Superconducting microwave devices</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Withers, R.</creatorcontrib><creatorcontrib>Anderson, A.</creatorcontrib><creatorcontrib>Green, J.</creatorcontrib><creatorcontrib>Reible, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Withers, R.</au><au>Anderson, A.</au><au>Green, J.</au><au>Reible, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductive delay-line technology and applications</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1985-03-01</date><risdate>1985</risdate><volume>21</volume><issue>2</issue><spage>186</spage><epage>192</epage><pages>186-192</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Microwave analog signal-processing filters have been realized in the form of coupled niobium striplines on silicon dielectric substrates. Device responses with ± 2-dB amplitude accuracy and 9°-rms phase error have been achieved in amplitude-weighted filters with 37.5 ns of dispersion and 2.3-GHz bandwidths. Relative side-lobe levels of -26 dB and less are currently obtained. The achievable dispersion for stripline circuits on a single pair of 5-cm-diameter, 125-μm-thick wafers is limited to about 40 ns by the electro-magnetic coupling between neighboring lines. To achieve greater dispersion two approaches are under development: (1) Stripline circuits are being fabricated on multiple wafer pairs which are physically stacked and electrically concatenated to produce dispersive delay lines with 4-GHz bandwidth and 75-ns dispersion time. Phenolic resin is used as an adhesive to ensure the mechanical integrity of the stacked structure. (2) A technique to fabricate dense stripline circuits on very thin (15-μm) single-crystal silicon superstrates supported by thicker substrates has been demonstrated and preliminary results will be described. A chirp-transform system capable of real-time spectral analysis has been constructed using a pair of the superconductive delay-line filters. A resolution of 43 MHz over an unprecedented 2400-MHz bandwidth with amplitude uniformity of ±1 dB and side-lobe levels of -18 dB was demonstrated.</abstract><pub>IEEE</pub><doi>10.1109/TMAG.1985.1063647</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1985-03, Vol.21 (2), p.186-192 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_1985_1063647 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Coupling circuits Delay Microwave filters Niobium Silicon Stripline Superconducting filters Superconducting microwave devices Superconductivity |
title | Superconductive delay-line technology and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductive%20delay-line%20technology%20and%20applications&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Withers,%20R.&rft.date=1985-03-01&rft.volume=21&rft.issue=2&rft.spage=186&rft.epage=192&rft.pages=186-192&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1985.1063647&rft_dat=%3Cproquest_RIE%3E28638453%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24803467&rft_id=info:pmid/&rft_ieee_id=1063647&rfr_iscdi=true |