An enhanced perturbation method for analysis of inductance

The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1980-09, Vol.16 (5), p.746-748
Hauptverfasser: Pannatoni, R., Wessling, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 5
container_start_page 746
container_title IEEE transactions on magnetics
container_volume 16
creator Pannatoni, R.
Wessling, R.
description The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.
doi_str_mv 10.1109/TMAG.1980.1060760
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_1980_1060760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1060760</ieee_id><sourcerecordid>28439524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d91541682cd422467ad411aa73b33b0ef67c3fdf9970b931309e2c2a6d67cb263</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqXwAxCLJ7YUn-06MVtV0YJUxFJmy_GHGpTaxU6G_nsSpQPT6b33uRsehB6BLACIfNl_rrYLkNUQiSClIFdoBpJDQYiQ12hGCFSF5ILforucf4bIl0Bm6HUVsAsHHYyz-ORS16dad00M-Oi6Q7TYx4R10O05NxlHj5tge9ON_D268brN7uEy5-h787Zfvxe7r-3HerUrDOWiK6yEJQdRUWM5HTalthxA65LVjNXEeVEa5q2XsiS1ZMCIdNRQLexQ1FSwOXqe_p5S_O1d7tSxyca1rQ4u9lnRijO5pHwAYQJNijkn59UpNUedzgqIGi2p0ZIaLamLpeHmabppnHP_-Kn9A_fDYpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28439524</pqid></control><display><type>article</type><title>An enhanced perturbation method for analysis of inductance</title><source>IEEE Electronic Library (IEL)</source><creator>Pannatoni, R. ; Wessling, R.</creator><creatorcontrib>Pannatoni, R. ; Wessling, R.</creatorcontrib><description>The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1980.1060760</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Ferrites ; Geometry ; Inductance ; Inductors ; Magnetic cores ; Magnetic flux ; Magnetic materials ; Permeability ; Perturbation methods</subject><ispartof>IEEE transactions on magnetics, 1980-09, Vol.16 (5), p.746-748</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d91541682cd422467ad411aa73b33b0ef67c3fdf9970b931309e2c2a6d67cb263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1060760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1060760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pannatoni, R.</creatorcontrib><creatorcontrib>Wessling, R.</creatorcontrib><title>An enhanced perturbation method for analysis of inductance</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.</description><subject>Convergence</subject><subject>Ferrites</subject><subject>Geometry</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic materials</subject><subject>Permeability</subject><subject>Perturbation methods</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqXwAxCLJ7YUn-06MVtV0YJUxFJmy_GHGpTaxU6G_nsSpQPT6b33uRsehB6BLACIfNl_rrYLkNUQiSClIFdoBpJDQYiQ12hGCFSF5ILforucf4bIl0Bm6HUVsAsHHYyz-ORS16dad00M-Oi6Q7TYx4R10O05NxlHj5tge9ON_D268brN7uEy5-h787Zfvxe7r-3HerUrDOWiK6yEJQdRUWM5HTalthxA65LVjNXEeVEa5q2XsiS1ZMCIdNRQLexQ1FSwOXqe_p5S_O1d7tSxyca1rQ4u9lnRijO5pHwAYQJNijkn59UpNUedzgqIGi2p0ZIaLamLpeHmabppnHP_-Kn9A_fDYpE</recordid><startdate>19800901</startdate><enddate>19800901</enddate><creator>Pannatoni, R.</creator><creator>Wessling, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19800901</creationdate><title>An enhanced perturbation method for analysis of inductance</title><author>Pannatoni, R. ; Wessling, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d91541682cd422467ad411aa73b33b0ef67c3fdf9970b931309e2c2a6d67cb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Convergence</topic><topic>Ferrites</topic><topic>Geometry</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic materials</topic><topic>Permeability</topic><topic>Perturbation methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Pannatoni, R.</creatorcontrib><creatorcontrib>Wessling, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pannatoni, R.</au><au>Wessling, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An enhanced perturbation method for analysis of inductance</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1980-09-01</date><risdate>1980</risdate><volume>16</volume><issue>5</issue><spage>746</spage><epage>748</epage><pages>746-748</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.</abstract><pub>IEEE</pub><doi>10.1109/TMAG.1980.1060760</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1980-09, Vol.16 (5), p.746-748
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_TMAG_1980_1060760
source IEEE Electronic Library (IEL)
subjects Convergence
Ferrites
Geometry
Inductance
Inductors
Magnetic cores
Magnetic flux
Magnetic materials
Permeability
Perturbation methods
title An enhanced perturbation method for analysis of inductance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20enhanced%20perturbation%20method%20for%20analysis%20of%20inductance&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Pannatoni,%20R.&rft.date=1980-09-01&rft.volume=16&rft.issue=5&rft.spage=746&rft.epage=748&rft.pages=746-748&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1980.1060760&rft_dat=%3Cproquest_RIE%3E28439524%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28439524&rft_id=info:pmid/&rft_ieee_id=1060760&rfr_iscdi=true