An enhanced perturbation method for analysis of inductance
The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the per...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1980-09, Vol.16 (5), p.746-748 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 5 |
container_start_page | 746 |
container_title | IEEE transactions on magnetics |
container_volume | 16 |
creator | Pannatoni, R. Wessling, R. |
description | The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence. |
doi_str_mv | 10.1109/TMAG.1980.1060760 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TMAG_1980_1060760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1060760</ieee_id><sourcerecordid>28439524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-d91541682cd422467ad411aa73b33b0ef67c3fdf9970b931309e2c2a6d67cb263</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqXwAxCLJ7YUn-06MVtV0YJUxFJmy_GHGpTaxU6G_nsSpQPT6b33uRsehB6BLACIfNl_rrYLkNUQiSClIFdoBpJDQYiQ12hGCFSF5ILforucf4bIl0Bm6HUVsAsHHYyz-ORS16dad00M-Oi6Q7TYx4R10O05NxlHj5tge9ON_D268brN7uEy5-h787Zfvxe7r-3HerUrDOWiK6yEJQdRUWM5HTalthxA65LVjNXEeVEa5q2XsiS1ZMCIdNRQLexQ1FSwOXqe_p5S_O1d7tSxyca1rQ4u9lnRijO5pHwAYQJNijkn59UpNUedzgqIGi2p0ZIaLamLpeHmabppnHP_-Kn9A_fDYpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28439524</pqid></control><display><type>article</type><title>An enhanced perturbation method for analysis of inductance</title><source>IEEE Electronic Library (IEL)</source><creator>Pannatoni, R. ; Wessling, R.</creator><creatorcontrib>Pannatoni, R. ; Wessling, R.</creatorcontrib><description>The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1980.1060760</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Ferrites ; Geometry ; Inductance ; Inductors ; Magnetic cores ; Magnetic flux ; Magnetic materials ; Permeability ; Perturbation methods</subject><ispartof>IEEE transactions on magnetics, 1980-09, Vol.16 (5), p.746-748</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-d91541682cd422467ad411aa73b33b0ef67c3fdf9970b931309e2c2a6d67cb263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1060760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1060760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pannatoni, R.</creatorcontrib><creatorcontrib>Wessling, R.</creatorcontrib><title>An enhanced perturbation method for analysis of inductance</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.</description><subject>Convergence</subject><subject>Ferrites</subject><subject>Geometry</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic materials</subject><subject>Permeability</subject><subject>Perturbation methods</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqXwAxCLJ7YUn-06MVtV0YJUxFJmy_GHGpTaxU6G_nsSpQPT6b33uRsehB6BLACIfNl_rrYLkNUQiSClIFdoBpJDQYiQ12hGCFSF5ILforucf4bIl0Bm6HUVsAsHHYyz-ORS16dad00M-Oi6Q7TYx4R10O05NxlHj5tge9ON_D268brN7uEy5-h787Zfvxe7r-3HerUrDOWiK6yEJQdRUWM5HTalthxA65LVjNXEeVEa5q2XsiS1ZMCIdNRQLexQ1FSwOXqe_p5S_O1d7tSxyca1rQ4u9lnRijO5pHwAYQJNijkn59UpNUedzgqIGi2p0ZIaLamLpeHmabppnHP_-Kn9A_fDYpE</recordid><startdate>19800901</startdate><enddate>19800901</enddate><creator>Pannatoni, R.</creator><creator>Wessling, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19800901</creationdate><title>An enhanced perturbation method for analysis of inductance</title><author>Pannatoni, R. ; Wessling, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-d91541682cd422467ad411aa73b33b0ef67c3fdf9970b931309e2c2a6d67cb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Convergence</topic><topic>Ferrites</topic><topic>Geometry</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic materials</topic><topic>Permeability</topic><topic>Perturbation methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Pannatoni, R.</creatorcontrib><creatorcontrib>Wessling, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pannatoni, R.</au><au>Wessling, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An enhanced perturbation method for analysis of inductance</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1980-09-01</date><risdate>1980</risdate><volume>16</volume><issue>5</issue><spage>746</spage><epage>748</epage><pages>746-748</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The inductance of a ferrite cup core inductor is the sum of two parts. One part is the self-inductance of the winding, The other dominant part can be called the residual inductance. We present a mathematical method for calculating the residual inductance from the geometry of the inductor and the permeability μ of the ferrite. The first step in the method is to develop a pair of perturbation series for the residual inductance, one series in powers of 1/μ, and the other series in powers of μ. The final step is to form a Padé approximant based on these series. The Padé approximant yields a uniformly valid approximation, whereas the series may diverge. We describe an application of the method, and discuss its convergence.</abstract><pub>IEEE</pub><doi>10.1109/TMAG.1980.1060760</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1980-09, Vol.16 (5), p.746-748 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TMAG_1980_1060760 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Ferrites Geometry Inductance Inductors Magnetic cores Magnetic flux Magnetic materials Permeability Perturbation methods |
title | An enhanced perturbation method for analysis of inductance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20enhanced%20perturbation%20method%20for%20analysis%20of%20inductance&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Pannatoni,%20R.&rft.date=1980-09-01&rft.volume=16&rft.issue=5&rft.spage=746&rft.epage=748&rft.pages=746-748&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1980.1060760&rft_dat=%3Cproquest_RIE%3E28439524%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28439524&rft_id=info:pmid/&rft_ieee_id=1060760&rfr_iscdi=true |