Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation
The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) contr...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2018-12, Vol.16 (12), p.2872-2880 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2880 |
---|---|
container_issue | 12 |
container_start_page | 2872 |
container_title | Revista IEEE América Latina |
container_volume | 16 |
creator | Oliveira, Matheus Canuto Moreno, Edward David da Silva, Guilherme Moura Afonso Zanabria Sotomayor, Oscar Alberto |
description | The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function. |
doi_str_mv | 10.1109/TLA.2018.8804251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2018_8804251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8804251</ieee_id><sourcerecordid>2275627594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-e7260841378914d879f444a7f57098d709fa9fe0bfeb082fec1498eaaa32b5a63</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOKfvgi8BnzeTNm2Txzl1ChOHbM8hbS8zoyY1SZX992Zuig9398F99x38kuSS4DEhmN8s55NxigkbM4ZpmpOjZEByykaY8_T4nz5NzrzfYJyxgmWDpLttrW3QrO1r6wG9wrpvZdDWIG3QIiowwaMvHd7QctsBIuhOywoCeLTy2qzRs22gRQsHja6D_gQ0tSY42yJpGnQng4yZtTW1bvVP7nlyomTr4eIwh8nq4X45fRzNX2ZP08l8VJOShhGUaYEZJVnJOKENK7milMpS5SXmrIlNSa4AVwoqzFIFNaGcgZQyS6tcFtkwud7nds5-9OCD2NjemfhSpGmZF7E4jS68d9XOeu9Aic7pd-m2gmCx4yoiV7HjKg5c48nV_kQDwJ_9d_sNp5Nz5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275627594</pqid></control><display><type>article</type><title>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</title><source>IEEE Electronic Library (IEL)</source><creator>Oliveira, Matheus Canuto ; Moreno, Edward David ; da Silva, Guilherme Moura Afonso ; Zanabria Sotomayor, Oscar Alberto</creator><creatorcontrib>Oliveira, Matheus Canuto ; Moreno, Edward David ; da Silva, Guilherme Moura Afonso ; Zanabria Sotomayor, Oscar Alberto</creatorcontrib><description>The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2018.8804251</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Blood ; Computer simulation ; Controllers ; Data Reconciliation ; Diabetes ; Digital PI Control ; Glucose ; Glucose Regulation ; IEEE transactions ; Kalman Filter ; Kalman filters ; Model Predictive Control ; Predictive control ; Proportional integral ; Regulation ; Signal processing ; Type 1 Diabetes</subject><ispartof>Revista IEEE América Latina, 2018-12, Vol.16 (12), p.2872-2880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8804251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8804251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oliveira, Matheus Canuto</creatorcontrib><creatorcontrib>Moreno, Edward David</creatorcontrib><creatorcontrib>da Silva, Guilherme Moura Afonso</creatorcontrib><creatorcontrib>Zanabria Sotomayor, Oscar Alberto</creatorcontrib><title>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.</description><subject>Blood</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Data Reconciliation</subject><subject>Diabetes</subject><subject>Digital PI Control</subject><subject>Glucose</subject><subject>Glucose Regulation</subject><subject>IEEE transactions</subject><subject>Kalman Filter</subject><subject>Kalman filters</subject><subject>Model Predictive Control</subject><subject>Predictive control</subject><subject>Proportional integral</subject><subject>Regulation</subject><subject>Signal processing</subject><subject>Type 1 Diabetes</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxosoOKfvgi8BnzeTNm2Txzl1ChOHbM8hbS8zoyY1SZX992Zuig9398F99x38kuSS4DEhmN8s55NxigkbM4ZpmpOjZEByykaY8_T4nz5NzrzfYJyxgmWDpLttrW3QrO1r6wG9wrpvZdDWIG3QIiowwaMvHd7QctsBIuhOywoCeLTy2qzRs22gRQsHja6D_gQ0tSY42yJpGnQng4yZtTW1bvVP7nlyomTr4eIwh8nq4X45fRzNX2ZP08l8VJOShhGUaYEZJVnJOKENK7milMpS5SXmrIlNSa4AVwoqzFIFNaGcgZQyS6tcFtkwud7nds5-9OCD2NjemfhSpGmZF7E4jS68d9XOeu9Aic7pd-m2gmCx4yoiV7HjKg5c48nV_kQDwJ_9d_sNp5Nz5Q</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Oliveira, Matheus Canuto</creator><creator>Moreno, Edward David</creator><creator>da Silva, Guilherme Moura Afonso</creator><creator>Zanabria Sotomayor, Oscar Alberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181201</creationdate><title>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</title><author>Oliveira, Matheus Canuto ; Moreno, Edward David ; da Silva, Guilherme Moura Afonso ; Zanabria Sotomayor, Oscar Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-e7260841378914d879f444a7f57098d709fa9fe0bfeb082fec1498eaaa32b5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blood</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Data Reconciliation</topic><topic>Diabetes</topic><topic>Digital PI Control</topic><topic>Glucose</topic><topic>Glucose Regulation</topic><topic>IEEE transactions</topic><topic>Kalman Filter</topic><topic>Kalman filters</topic><topic>Model Predictive Control</topic><topic>Predictive control</topic><topic>Proportional integral</topic><topic>Regulation</topic><topic>Signal processing</topic><topic>Type 1 Diabetes</topic><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Matheus Canuto</creatorcontrib><creatorcontrib>Moreno, Edward David</creatorcontrib><creatorcontrib>da Silva, Guilherme Moura Afonso</creatorcontrib><creatorcontrib>Zanabria Sotomayor, Oscar Alberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliveira, Matheus Canuto</au><au>Moreno, Edward David</au><au>da Silva, Guilherme Moura Afonso</au><au>Zanabria Sotomayor, Oscar Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>16</volume><issue>12</issue><spage>2872</spage><epage>2880</epage><pages>2872-2880</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2018.8804251</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2018-12, Vol.16 (12), p.2872-2880 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TLA_2018_8804251 |
source | IEEE Electronic Library (IEL) |
subjects | Blood Computer simulation Controllers Data Reconciliation Diabetes Digital PI Control Glucose Glucose Regulation IEEE transactions Kalman Filter Kalman filters Model Predictive Control Predictive control Proportional integral Regulation Signal processing Type 1 Diabetes |
title | Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20Glucose%20Regulation%20in%20Patients%20with%20Type%201%20Diabetes%20Using%20Model%20Predictive%20Control%20and%20Data%20Reconciliation&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Oliveira,%20Matheus%20Canuto&rft.date=2018-12-01&rft.volume=16&rft.issue=12&rft.spage=2872&rft.epage=2880&rft.pages=2872-2880&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2018.8804251&rft_dat=%3Cproquest_RIE%3E2275627594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275627594&rft_id=info:pmid/&rft_ieee_id=8804251&rfr_iscdi=true |