Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation

The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2018-12, Vol.16 (12), p.2872-2880
Hauptverfasser: Oliveira, Matheus Canuto, Moreno, Edward David, da Silva, Guilherme Moura Afonso, Zanabria Sotomayor, Oscar Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2880
container_issue 12
container_start_page 2872
container_title Revista IEEE América Latina
container_volume 16
creator Oliveira, Matheus Canuto
Moreno, Edward David
da Silva, Guilherme Moura Afonso
Zanabria Sotomayor, Oscar Alberto
description The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.
doi_str_mv 10.1109/TLA.2018.8804251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2018_8804251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8804251</ieee_id><sourcerecordid>2275627594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-e7260841378914d879f444a7f57098d709fa9fe0bfeb082fec1498eaaa32b5a63</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOKfvgi8BnzeTNm2Txzl1ChOHbM8hbS8zoyY1SZX992Zuig9398F99x38kuSS4DEhmN8s55NxigkbM4ZpmpOjZEByykaY8_T4nz5NzrzfYJyxgmWDpLttrW3QrO1r6wG9wrpvZdDWIG3QIiowwaMvHd7QctsBIuhOywoCeLTy2qzRs22gRQsHja6D_gQ0tSY42yJpGnQng4yZtTW1bvVP7nlyomTr4eIwh8nq4X45fRzNX2ZP08l8VJOShhGUaYEZJVnJOKENK7milMpS5SXmrIlNSa4AVwoqzFIFNaGcgZQyS6tcFtkwud7nds5-9OCD2NjemfhSpGmZF7E4jS68d9XOeu9Aic7pd-m2gmCx4yoiV7HjKg5c48nV_kQDwJ_9d_sNp5Nz5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275627594</pqid></control><display><type>article</type><title>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</title><source>IEEE Electronic Library (IEL)</source><creator>Oliveira, Matheus Canuto ; Moreno, Edward David ; da Silva, Guilherme Moura Afonso ; Zanabria Sotomayor, Oscar Alberto</creator><creatorcontrib>Oliveira, Matheus Canuto ; Moreno, Edward David ; da Silva, Guilherme Moura Afonso ; Zanabria Sotomayor, Oscar Alberto</creatorcontrib><description>The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2018.8804251</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Blood ; Computer simulation ; Controllers ; Data Reconciliation ; Diabetes ; Digital PI Control ; Glucose ; Glucose Regulation ; IEEE transactions ; Kalman Filter ; Kalman filters ; Model Predictive Control ; Predictive control ; Proportional integral ; Regulation ; Signal processing ; Type 1 Diabetes</subject><ispartof>Revista IEEE América Latina, 2018-12, Vol.16 (12), p.2872-2880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8804251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8804251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oliveira, Matheus Canuto</creatorcontrib><creatorcontrib>Moreno, Edward David</creatorcontrib><creatorcontrib>da Silva, Guilherme Moura Afonso</creatorcontrib><creatorcontrib>Zanabria Sotomayor, Oscar Alberto</creatorcontrib><title>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.</description><subject>Blood</subject><subject>Computer simulation</subject><subject>Controllers</subject><subject>Data Reconciliation</subject><subject>Diabetes</subject><subject>Digital PI Control</subject><subject>Glucose</subject><subject>Glucose Regulation</subject><subject>IEEE transactions</subject><subject>Kalman Filter</subject><subject>Kalman filters</subject><subject>Model Predictive Control</subject><subject>Predictive control</subject><subject>Proportional integral</subject><subject>Regulation</subject><subject>Signal processing</subject><subject>Type 1 Diabetes</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxosoOKfvgi8BnzeTNm2Txzl1ChOHbM8hbS8zoyY1SZX992Zuig9398F99x38kuSS4DEhmN8s55NxigkbM4ZpmpOjZEByykaY8_T4nz5NzrzfYJyxgmWDpLttrW3QrO1r6wG9wrpvZdDWIG3QIiowwaMvHd7QctsBIuhOywoCeLTy2qzRs22gRQsHja6D_gQ0tSY42yJpGnQng4yZtTW1bvVP7nlyomTr4eIwh8nq4X45fRzNX2ZP08l8VJOShhGUaYEZJVnJOKENK7milMpS5SXmrIlNSa4AVwoqzFIFNaGcgZQyS6tcFtkwud7nds5-9OCD2NjemfhSpGmZF7E4jS68d9XOeu9Aic7pd-m2gmCx4yoiV7HjKg5c48nV_kQDwJ_9d_sNp5Nz5Q</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Oliveira, Matheus Canuto</creator><creator>Moreno, Edward David</creator><creator>da Silva, Guilherme Moura Afonso</creator><creator>Zanabria Sotomayor, Oscar Alberto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181201</creationdate><title>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</title><author>Oliveira, Matheus Canuto ; Moreno, Edward David ; da Silva, Guilherme Moura Afonso ; Zanabria Sotomayor, Oscar Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-e7260841378914d879f444a7f57098d709fa9fe0bfeb082fec1498eaaa32b5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Blood</topic><topic>Computer simulation</topic><topic>Controllers</topic><topic>Data Reconciliation</topic><topic>Diabetes</topic><topic>Digital PI Control</topic><topic>Glucose</topic><topic>Glucose Regulation</topic><topic>IEEE transactions</topic><topic>Kalman Filter</topic><topic>Kalman filters</topic><topic>Model Predictive Control</topic><topic>Predictive control</topic><topic>Proportional integral</topic><topic>Regulation</topic><topic>Signal processing</topic><topic>Type 1 Diabetes</topic><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Matheus Canuto</creatorcontrib><creatorcontrib>Moreno, Edward David</creatorcontrib><creatorcontrib>da Silva, Guilherme Moura Afonso</creatorcontrib><creatorcontrib>Zanabria Sotomayor, Oscar Alberto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliveira, Matheus Canuto</au><au>Moreno, Edward David</au><au>da Silva, Guilherme Moura Afonso</au><au>Zanabria Sotomayor, Oscar Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>16</volume><issue>12</issue><spage>2872</spage><epage>2880</epage><pages>2872-2880</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The need to have mechanisms and technologies for the control of blood glucose levels is essential for people who have diabetes of any type. In this way, this paper presents the results obtained of blood glucose control using Model Predictive Control (MPC) and digital Proportional Integral (PI) control, which has been simulated with virtual patients. Initially, a model describing the dynamics of glucose metabolism in the human body was elaborated and, to make the simulation more real, it was considered the action of disturbances and noises. After modeling the system, the controllers were developed. Signal processing and data reconciliation was done using the Kalman Filter. With the objective of improving the performance of the controllers, the feedback of reconciled data technique was used and the performance of the MPC controller was improved by 83.9% based on the elaborated cost function.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2018.8804251</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2018-12, Vol.16 (12), p.2872-2880
issn 1548-0992
1548-0992
language eng
recordid cdi_crossref_primary_10_1109_TLA_2018_8804251
source IEEE Electronic Library (IEL)
subjects Blood
Computer simulation
Controllers
Data Reconciliation
Diabetes
Digital PI Control
Glucose
Glucose Regulation
IEEE transactions
Kalman Filter
Kalman filters
Model Predictive Control
Predictive control
Proportional integral
Regulation
Signal processing
Type 1 Diabetes
title Blood Glucose Regulation in Patients with Type 1 Diabetes Using Model Predictive Control and Data Reconciliation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20Glucose%20Regulation%20in%20Patients%20with%20Type%201%20Diabetes%20Using%20Model%20Predictive%20Control%20and%20Data%20Reconciliation&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Oliveira,%20Matheus%20Canuto&rft.date=2018-12-01&rft.volume=16&rft.issue=12&rft.spage=2872&rft.epage=2880&rft.pages=2872-2880&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2018.8804251&rft_dat=%3Cproquest_RIE%3E2275627594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275627594&rft_id=info:pmid/&rft_ieee_id=8804251&rfr_iscdi=true