Ridge Path in Mixtures Experiments: Optimal Result with Restriction on Prediction of Variance
In order to evaluate a methodology applied to the ridge analysis in mixing experiments with linear constraints, this article proposes through the construction of a ridge path to obtain the maximum or minimum value of the predicted response under a prediction variance conditioned to a restriction. Fo...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2017-02, Vol.15 (2), p.290-299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 2 |
container_start_page | 290 |
container_title | Revista IEEE América Latina |
container_volume | 15 |
creator | Nepomucena, Tania Miranda Cirillo, Marcelo Angelo Menezes, Fortunato Silva |
description | In order to evaluate a methodology applied to the ridge analysis in mixing experiments with linear constraints, this article proposes through the construction of a ridge path to obtain the maximum or minimum value of the predicted response under a prediction variance conditioned to a restriction. For this purpose, we considered two experiments mixtures with variables with a lower or upper bound limit. The results were compared with the ones obtained by other methods available in the literature in industrial application. According to the degree of multicollinearity of the variables in each experiment, it was observed that the proposed methodology was efficient to provide predicted response with the value higher than the maximum obtained by existing methods and variance reduced prediction |
doi_str_mv | 10.1109/TLA.2017.7854625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TLA_2017_7854625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7854625</ieee_id><sourcerecordid>1869421262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-aa8bc312601c30048e2985815b7ea22e175994ce468307b78c2b3a05e4a20ca13</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgrd4FLwHPuybZZDfrrZT6AZWWUr1JyKZTTWl31ySL9d-b0laEgZlh3rx58xC6piSllJR38_EgZYQWaSEFz5k4QT0quExIWbLTf_U5uvB-RUgmc5n10PvMLj4AT3X4xLbGL3YbOgcej7YtOLuBOvh7PGmD3eg1noHv1gF_2wiOdXDWBNvUOMbUweLYLfGbdlbXBi7R2VKvPVwdch-9Pozmw6dkPHl8Hg7GiWGMhkRrWZmMspxQkxHCJbBSCklFVYBmDGghypIb4FEyKapCGlZlmgjgmhGjadZHt3ve1jVfXVSmVk3n6nhSUZmXnEVuFlFkjzKu8d7BUrXxRe1-FCVqZ6KKJqqdiepgYly52a9YAPiDH6e_OPVs1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869421262</pqid></control><display><type>article</type><title>Ridge Path in Mixtures Experiments: Optimal Result with Restriction on Prediction of Variance</title><source>IEEE Electronic Library (IEL)</source><creator>Nepomucena, Tania Miranda ; Cirillo, Marcelo Angelo ; Menezes, Fortunato Silva</creator><creatorcontrib>Nepomucena, Tania Miranda ; Cirillo, Marcelo Angelo ; Menezes, Fortunato Silva</creatorcontrib><description>In order to evaluate a methodology applied to the ridge analysis in mixing experiments with linear constraints, this article proposes through the construction of a ridge path to obtain the maximum or minimum value of the predicted response under a prediction variance conditioned to a restriction. For this purpose, we considered two experiments mixtures with variables with a lower or upper bound limit. The results were compared with the ones obtained by other methods available in the literature in industrial application. According to the degree of multicollinearity of the variables in each experiment, it was observed that the proposed methodology was efficient to provide predicted response with the value higher than the maximum obtained by existing methods and variance reduced prediction</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2017.7854625</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation models ; Computational modeling ; IEEE transactions ; Industrial applications ; Matrix decomposition ; Mixtures ; Monitoring ; Multicolinearity ; Optimization ; Predicition Variance ; Predictions ; Reactive power ; Upper bound ; Upper bounds ; Variance</subject><ispartof>Revista IEEE América Latina, 2017-02, Vol.15 (2), p.290-299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-aa8bc312601c30048e2985815b7ea22e175994ce468307b78c2b3a05e4a20ca13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7854625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7854625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nepomucena, Tania Miranda</creatorcontrib><creatorcontrib>Cirillo, Marcelo Angelo</creatorcontrib><creatorcontrib>Menezes, Fortunato Silva</creatorcontrib><title>Ridge Path in Mixtures Experiments: Optimal Result with Restriction on Prediction of Variance</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>In order to evaluate a methodology applied to the ridge analysis in mixing experiments with linear constraints, this article proposes through the construction of a ridge path to obtain the maximum or minimum value of the predicted response under a prediction variance conditioned to a restriction. For this purpose, we considered two experiments mixtures with variables with a lower or upper bound limit. The results were compared with the ones obtained by other methods available in the literature in industrial application. According to the degree of multicollinearity of the variables in each experiment, it was observed that the proposed methodology was efficient to provide predicted response with the value higher than the maximum obtained by existing methods and variance reduced prediction</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>IEEE transactions</subject><subject>Industrial applications</subject><subject>Matrix decomposition</subject><subject>Mixtures</subject><subject>Monitoring</subject><subject>Multicolinearity</subject><subject>Optimization</subject><subject>Predicition Variance</subject><subject>Predictions</subject><subject>Reactive power</subject><subject>Upper bound</subject><subject>Upper bounds</subject><subject>Variance</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1LAzEQDaJgrd4FLwHPuybZZDfrrZT6AZWWUr1JyKZTTWl31ySL9d-b0laEgZlh3rx58xC6piSllJR38_EgZYQWaSEFz5k4QT0quExIWbLTf_U5uvB-RUgmc5n10PvMLj4AT3X4xLbGL3YbOgcej7YtOLuBOvh7PGmD3eg1noHv1gF_2wiOdXDWBNvUOMbUweLYLfGbdlbXBi7R2VKvPVwdch-9Pozmw6dkPHl8Hg7GiWGMhkRrWZmMspxQkxHCJbBSCklFVYBmDGghypIb4FEyKapCGlZlmgjgmhGjadZHt3ve1jVfXVSmVk3n6nhSUZmXnEVuFlFkjzKu8d7BUrXxRe1-FCVqZ6KKJqqdiepgYly52a9YAPiDH6e_OPVs1A</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Nepomucena, Tania Miranda</creator><creator>Cirillo, Marcelo Angelo</creator><creator>Menezes, Fortunato Silva</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Ridge Path in Mixtures Experiments: Optimal Result with Restriction on Prediction of Variance</title><author>Nepomucena, Tania Miranda ; Cirillo, Marcelo Angelo ; Menezes, Fortunato Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-aa8bc312601c30048e2985815b7ea22e175994ce468307b78c2b3a05e4a20ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>IEEE transactions</topic><topic>Industrial applications</topic><topic>Matrix decomposition</topic><topic>Mixtures</topic><topic>Monitoring</topic><topic>Multicolinearity</topic><topic>Optimization</topic><topic>Predicition Variance</topic><topic>Predictions</topic><topic>Reactive power</topic><topic>Upper bound</topic><topic>Upper bounds</topic><topic>Variance</topic><toplevel>online_resources</toplevel><creatorcontrib>Nepomucena, Tania Miranda</creatorcontrib><creatorcontrib>Cirillo, Marcelo Angelo</creatorcontrib><creatorcontrib>Menezes, Fortunato Silva</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nepomucena, Tania Miranda</au><au>Cirillo, Marcelo Angelo</au><au>Menezes, Fortunato Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ridge Path in Mixtures Experiments: Optimal Result with Restriction on Prediction of Variance</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>15</volume><issue>2</issue><spage>290</spage><epage>299</epage><pages>290-299</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>In order to evaluate a methodology applied to the ridge analysis in mixing experiments with linear constraints, this article proposes through the construction of a ridge path to obtain the maximum or minimum value of the predicted response under a prediction variance conditioned to a restriction. For this purpose, we considered two experiments mixtures with variables with a lower or upper bound limit. The results were compared with the ones obtained by other methods available in the literature in industrial application. According to the degree of multicollinearity of the variables in each experiment, it was observed that the proposed methodology was efficient to provide predicted response with the value higher than the maximum obtained by existing methods and variance reduced prediction</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2017.7854625</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2017-02, Vol.15 (2), p.290-299 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TLA_2017_7854625 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Computational modeling IEEE transactions Industrial applications Matrix decomposition Mixtures Monitoring Multicolinearity Optimization Predicition Variance Predictions Reactive power Upper bound Upper bounds Variance |
title | Ridge Path in Mixtures Experiments: Optimal Result with Restriction on Prediction of Variance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ridge%20Path%20in%20Mixtures%20Experiments:%20Optimal%20Result%20with%20Restriction%20on%20Prediction%20of%20Variance&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Nepomucena,%20Tania%20Miranda&rft.date=2017-02-01&rft.volume=15&rft.issue=2&rft.spage=290&rft.epage=299&rft.pages=290-299&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2017.7854625&rft_dat=%3Cproquest_RIE%3E1869421262%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869421262&rft_id=info:pmid/&rft_ieee_id=7854625&rfr_iscdi=true |